Result
게시물 키워드""에 대한 9461개의 검색결과를 찾았습니다.
햇빛도 알아서 전기도 알아서, 더 진화된 스마트 윈도우
햇빛도 알아서 전기도 알아서, 더 진화된 스마트 윈도우 - 추가 전원·추가 동작 없이 태양빛 유무에 따라 자동 블라인드 기능 발현 - 창호형 태양전지와 일체형 구조로, 투과된 태양광을 전기에너지로도 전환 - 실내 미관 및 보안, 에너지 효율까지, 미래형 창호시스템 가능 블라인드를 내리거나 전원을 연결하고 버튼을 누르는 수고없이 자동으로 밤에는 빛을 차단하고 아침에는 투명해지는 진화된 스마트 윈도우가 개발되었다. 태양빛에 반응해 자동으로 투과도가 변하는 것이다. 뿐만 아니라, 개발된 윈도우는 창호형 태양전지와 연동해 자동으로 전력도 생산할 수 있다. 다양한 기능을 가진 일체형 스마트 윈도우는 건물 창문이나 자동차 유리, 썬루프 등 다양한 곳에 활용할 수 있을 전망이다. 한국과학기술연구원(원장 이병권) 광전융합시스템연구단 고두현 박사는 영국과의 국제 공동연구를 통해 자외선 유무에 따라 자동적으로 가시광선 영역의 빛을 개방·차폐할 수 있는 소재를 개발하고, 이를 창호형 태양전지와 결합한 다기능 태양전지 일체형 스마트 윈도우를 개발했다고 밝혔다. 본 연구는 ‘Optically Switchable Smart Windows with an Integrated Photovoltaics’ 라는 제목으로 재료분야 세계적 권위의 과학전문지 ‘Advanced Energy Materials' 온라인판 10월호에 게재되었다. 연구팀은 분자구조가 나선형(helix, 나사선)인 액정 소재와 아조 벤젠계(Azo Benezene) 화합물을 혼합해 새로운 형태의 액정을 만들었다. 아조 벤젠계 화합물은 빛을 만나면 분자 구조가 변하는 특성이 있어 빛의 유무에 따라 액정의 나선주기를 조절할 수 있다. 이렇게 만들어진 액정에다 위, 아래 각각 2개의 편광판을 부착한 것이 스마트 윈도우다. 빛이 없는 환경에서는 액정의 분자들은 매우 짧은 나선 주기를 가지게 되고 반대의 경우는 나선주기가 길어진다. 짧은 주기의 경우는 위쪽 편광판을 통하여 들어온 빛의 편광상태가 변화되지 않고 아래 편광판에 의하여 차단된다. 그러나 나선 주기가 길어진 경우에는 빛의 편광 상태가 변화되는데 이렇게 들어온 빛은 아래 편광판을 투과해 실내로 들어오는 것이다. 연구팀은 제작된 액정을 창호형 태양전지와 연동하여, 태양전지가 투과되는 빛을 이용하여 전력을 생산할 수 있도록 했다. 개발한 액정 나선의 주기에 따라 투과되는 빛의 파장 영역을 조절 할 수 있는 점을 활용한 것이다. 태양전지는 흔히 가시광선 영역이 사용되는데, 연구팀은 가시광선이 투과되도록 했다. 현재 판매되고 있는 스마트 윈도우 기술은 태양빛을 개방·차폐하는 기능은 있지만 장치를 작동하기 위한 추가의 전원이 필요하거나, 사용자가 장치를 동작시켜야 한다. 개발된 ‘일체형 스마트 윈도우’는 추가적인 외부 전원이나 사용자의 조작없이 자외선에 반응해 스스로 작동해 빌딩이나 차량에 쓰이는 경우 효율성이 높다는 장점이 있고 추가 전력생산도 가능하다. KIST 고두현 박사는 “이번에 개발된 일체형 스마트 윈도우를 창호에 활용하면, 날로 심각해져 가는 전기에너지 부족 문제 해소에 기여할 것으로 보인다”며, “앞으로, 스마트 윈도우 제품의 투명도 조절 및 미관을 고려한 다양한 색으로 제작해 기술 상용화를 위한 응용 연구를 할 계획이다”고 말했다. 본 연구는 미래창조과학부 미래융합파이오니아 사업과 기후변화 대응 기술개발 사업, 그리고 KIST 기관고유사업의 일환으로 추진되었다. <연구자> < 그림 1. KIST에서 개발된 다기능 고효율 스마트 윈도우의 구조도> <그림 2. 자외선에 반응하는 액정창 실물 사진, 밤(좌), 낮(우)> <그림 3. 태양전지와 결합한 스마트 윈도우 실물 사진>
햇빛도 알아서 전기도 알아서, 더 진화된 스마트 윈도우
햇빛도 알아서 전기도 알아서, 더 진화된 스마트 윈도우 - 추가 전원·추가 동작 없이 태양빛 유무에 따라 자동 블라인드 기능 발현 - 창호형 태양전지와 일체형 구조로, 투과된 태양광을 전기에너지로도 전환 - 실내 미관 및 보안, 에너지 효율까지, 미래형 창호시스템 가능 블라인드를 내리거나 전원을 연결하고 버튼을 누르는 수고없이 자동으로 밤에는 빛을 차단하고 아침에는 투명해지는 진화된 스마트 윈도우가 개발되었다. 태양빛에 반응해 자동으로 투과도가 변하는 것이다. 뿐만 아니라, 개발된 윈도우는 창호형 태양전지와 연동해 자동으로 전력도 생산할 수 있다. 다양한 기능을 가진 일체형 스마트 윈도우는 건물 창문이나 자동차 유리, 썬루프 등 다양한 곳에 활용할 수 있을 전망이다. 한국과학기술연구원(원장 이병권) 광전융합시스템연구단 고두현 박사는 영국과의 국제 공동연구를 통해 자외선 유무에 따라 자동적으로 가시광선 영역의 빛을 개방·차폐할 수 있는 소재를 개발하고, 이를 창호형 태양전지와 결합한 다기능 태양전지 일체형 스마트 윈도우를 개발했다고 밝혔다. 본 연구는 ‘Optically Switchable Smart Windows with an Integrated Photovoltaics’ 라는 제목으로 재료분야 세계적 권위의 과학전문지 ‘Advanced Energy Materials' 온라인판 10월호에 게재되었다. 연구팀은 분자구조가 나선형(helix, 나사선)인 액정 소재와 아조 벤젠계(Azo Benezene) 화합물을 혼합해 새로운 형태의 액정을 만들었다. 아조 벤젠계 화합물은 빛을 만나면 분자 구조가 변하는 특성이 있어 빛의 유무에 따라 액정의 나선주기를 조절할 수 있다. 이렇게 만들어진 액정에다 위, 아래 각각 2개의 편광판을 부착한 것이 스마트 윈도우다. 빛이 없는 환경에서는 액정의 분자들은 매우 짧은 나선 주기를 가지게 되고 반대의 경우는 나선주기가 길어진다. 짧은 주기의 경우는 위쪽 편광판을 통하여 들어온 빛의 편광상태가 변화되지 않고 아래 편광판에 의하여 차단된다. 그러나 나선 주기가 길어진 경우에는 빛의 편광 상태가 변화되는데 이렇게 들어온 빛은 아래 편광판을 투과해 실내로 들어오는 것이다. 연구팀은 제작된 액정을 창호형 태양전지와 연동하여, 태양전지가 투과되는 빛을 이용하여 전력을 생산할 수 있도록 했다. 개발한 액정 나선의 주기에 따라 투과되는 빛의 파장 영역을 조절 할 수 있는 점을 활용한 것이다. 태양전지는 흔히 가시광선 영역이 사용되는데, 연구팀은 가시광선이 투과되도록 했다. 현재 판매되고 있는 스마트 윈도우 기술은 태양빛을 개방·차폐하는 기능은 있지만 장치를 작동하기 위한 추가의 전원이 필요하거나, 사용자가 장치를 동작시켜야 한다. 개발된 ‘일체형 스마트 윈도우’는 추가적인 외부 전원이나 사용자의 조작없이 자외선에 반응해 스스로 작동해 빌딩이나 차량에 쓰이는 경우 효율성이 높다는 장점이 있고 추가 전력생산도 가능하다. KIST 고두현 박사는 “이번에 개발된 일체형 스마트 윈도우를 창호에 활용하면, 날로 심각해져 가는 전기에너지 부족 문제 해소에 기여할 것으로 보인다”며, “앞으로, 스마트 윈도우 제품의 투명도 조절 및 미관을 고려한 다양한 색으로 제작해 기술 상용화를 위한 응용 연구를 할 계획이다”고 말했다. 본 연구는 미래창조과학부 미래융합파이오니아 사업과 기후변화 대응 기술개발 사업, 그리고 KIST 기관고유사업의 일환으로 추진되었다. <연구자> < 그림 1. KIST에서 개발된 다기능 고효율 스마트 윈도우의 구조도> <그림 2. 자외선에 반응하는 액정창 실물 사진, 밤(좌), 낮(우)> <그림 3. 태양전지와 결합한 스마트 윈도우 실물 사진>
KIST 예술문화마당 음악극 <클라운 타운> 공연행사 개최(2014.09.24)
2014년 가을맞이 하반기 KIST 예술문화마당 행사의 일환으로 9.24일 오후 3시 30분 KIST 존슨강당에서 음악극 <클라운 타운> 공연이 성황리에 개최되었습니다. KIST 직원 및 가족, 외국과학자, 학연생 등 뿐만 아니라 문화나눔 실천을 위해 관내 복지관 주민, 학생 등 주변 이웃도 초청하여 함께 즐김으로써 더욱 뜻깊은 행사가 되었습니다. 음악극 <클라운 타운>은 극단 ‘벼랑끝 날다’의 2013년 거창국제연극제 공식 초청된 작품으로 올 5~6월에 압구정동 윤당아트홀에서도 공연된 바 있는 재미와 흥행에 성공한 검증받은 작품입니다. <클라운 타운>은 연기, 음악, 마임, 마술 등 다양한 볼거리와 웃음과 감동 그리고 광대들의 삶을 통해 우리자신을 돌아보게 하는 작품으로 남녀노소 모두 즐겁게 관람할수 있는 음악극입니다. 공연을 관람한 월곡중학교 배우리 선생님은 이렇게 재미있고 좋은 공연에 학생들을 초대해준 KIST에 감사하며 앞으로도 좋은 행사에 초대해 주기를 희망한다고 공연 관람 소감을 전하였습니다. KIST에서는 신바람 나는 직장생활 영위를 위해 분기에 한번씩 개최하는 공연행사에 질적 수준을 더욱 높이고, 앞으로도 계속 관내 주민을 초청하여 함께 즐기는 문화나눔을 실천할 예정입니다.
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어 - 지구상에 많은 값싸고 친환경적인 원소로 이루어진 박막태양전지 기술 개발 - 유해 화학용매 없이 기계적 반응만으로 태양전지 원료 생산 공정 혁신 유리와 같은 값싼 재료 위에 붙일 수 있는 얇은 태양전지인 박막태양전지는 원가가 저렴하고 다양하게 활용할 수 있어 미래 태양광 기술로 주목받고 있다. 하지만 제작공정이 까다로워 상용화에 걸림돌이 되어왔다. 국내 연구진이 인체에 유해한 화학 용매 없이 원료들을 기계적으로 회전시켜 박막태양전지에 쓰이는 나노결정을 개발했다. 개발한 공정은 기존 유해 화학용매를 사용한 것보다 10시간 이상 시간을 단축할 수 있고 원료로 사용된 원소들 역시 지구상에 많이 존재하는 원소로 이루어져 원료비 절감효과까지 있는 것으로 밝혀졌다. 한국과학기술연구원(KIST, 원장 이병권) 이도권 박사(광전하이브리드연구센터), 조소혜 박사(물질구조제어연구단) 공동 연구팀은 초저가 박막태양전지 제조에 필요한 나노결정(나노분말) 잉크를 유해 화학용매의 사용 없이 지구상에 많이 존재하는 원소만으로 손쉽게 대량으로 제조하는 기술을 개발했다고 밝혔다. 이번 연구 성과는 나노기술 분야의 국제학술지 나노스케일(Nanoscale) 온라인판에 "Solvent-Free Synthesis of Cu2ZnSnS4 Nanocrystals: A Facile, Green, Up-scalable Route for Low Cost Photovoltaic Cells"의 제목으로 9월 게재되었다. 본 연구는 무독성 원료를 사용하여 생산 공정의 혁신을 주도하는 등 연구의 우수성 및 참신함을 인정받아 10월 21일자 표지논문으로 선정되었다. <그림 1> 지금까지 주로 개발된 박막태양전지는 CIGS(구리-인듐-갈륨-셀레늄) 또는 CdTe(카드뮴-테릴륨) 화합물에 기반한 것이다. 이들은 인듐, 갈륨, 테릴륨과 같은 희소 원소 또는 카드뮴과 같은 유해 원소로 이루어진데다 값이 비싸 상용화에 어려움이 있었다. 이들을 대체하기 위해 무독성 범용 원소만으로 구성된 CZTS(구리-아연-주석-황) 박막태양전지에 대한 관심이 전 세계적으로 뜨겁다. 지구상에 풍부한 원소를 사용하므로 원료비 절감은 덤으로 따라온다. 연구진 역시 무독성 원소인 CZTS 전지를 더 친환경적, 효율적으로 만드는 방법에 몰두했다. 이러한 박막태양전지를 만드는 데는 다양한 공정 방법이 있는데 연구팀은 그중 가격경쟁력이 높은 프린팅 방법을 사용했다. 프린팅 방법은 나노분말 원료를 잉크로 만들어서 인쇄하듯 태양전지를 만드는 방법으로 다른 공정에 비해 공정처리에 드는 비용이 저렴한 것이 특징이다. 지금까지 많은 국내외 연구자들이 CZTS 나노결정을 제조하기 위해 화학용액 반응법을 사용했다. 그러나 이는 유해한 화학용매를 사용하므로 제조과정에 주의가 요구되며, 높은 온도로 처리해야 하기 때문에 비용이 높고, 반응 후에 오염물질을 남기는 단점이 있었다. 연구팀은 오염을 피하기 위해 구리, 아연, 주석, 황만을 기계화학적으로 반응시켜 CZTS 나노결정을 합성하는 데 성공하였다. 원료 분말들을 큰 구슬(볼)들과 함께 통에 넣은 후 회전시켜 기계적 에너지를 주면 분말들은 분쇄되면서 에너지를 축적하게 되는데 그런 축적과정을 거쳐 자발적인 화학반응에 이르게 된다. 연구팀은 이때 발생하는 반응열에 의해 급격한 화학반응이 연쇄적으로 일어나는 원리를 이용했다. 이 방법은 고온 공정이 필요 없고 용매의 건조, 나노입자 분리, 유기물 제거 등의 공정 단계를 생략할 수 있어 공정 시간을 10시간 이상 획기적으로 단축시킬 수 있다. 연구진은 개발한 나노결정 잉크를 박막태양전지에 활용한 결과 고효율, 초저가, 프린터블 박막태양전지가 제조 가능함을 보여주었다. KIST 연구팀은 “개발된 박막태양전지 제조 기술은 무독성, 범용 원소들로 이루어진 나노결정 원료를 유해한 화학물질을 사용하지 않고 이차적인 오염물질의 생성 없이 대량 생산가능하다는 점에서 획기적”이라며 “또한, 제조된 나노결정이 대기 중에서 1년 이상 화학적, 구조적으로 안정하다는 것이 확인되어 분말공정을 이용한 박막태양전지의 상용화에 크게 기여할 수 있을 것”이라고 밝혔다. 이번 연구는 KIST의 기관고유연구사업 및 기초기술연구회 NAP(National Agenda Project)사업의 연구비 지원으로 수행되었다. <연구진> 이도권 박사 조소혜 박사 <참고 이미지 자료> 1. Nanoscale지 : 구리, 아연, 주석, 황으로 이루어진 원료 입자가 기계화학적 반응을 통해 CZTS(구리-아연-주석-황) 화합물 나노결정으로 합성되는 과정을 나타냄. <연구내용 요약용 이미지>
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어 - 지구상에 많은 값싸고 친환경적인 원소로 이루어진 박막태양전지 기술 개발 - 유해 화학용매 없이 기계적 반응만으로 태양전지 원료 생산 공정 혁신 유리와 같은 값싼 재료 위에 붙일 수 있는 얇은 태양전지인 박막태양전지는 원가가 저렴하고 다양하게 활용할 수 있어 미래 태양광 기술로 주목받고 있다. 하지만 제작공정이 까다로워 상용화에 걸림돌이 되어왔다. 국내 연구진이 인체에 유해한 화학 용매 없이 원료들을 기계적으로 회전시켜 박막태양전지에 쓰이는 나노결정을 개발했다. 개발한 공정은 기존 유해 화학용매를 사용한 것보다 10시간 이상 시간을 단축할 수 있고 원료로 사용된 원소들 역시 지구상에 많이 존재하는 원소로 이루어져 원료비 절감효과까지 있는 것으로 밝혀졌다. 한국과학기술연구원(KIST, 원장 이병권) 이도권 박사(광전하이브리드연구센터), 조소혜 박사(물질구조제어연구단) 공동 연구팀은 초저가 박막태양전지 제조에 필요한 나노결정(나노분말) 잉크를 유해 화학용매의 사용 없이 지구상에 많이 존재하는 원소만으로 손쉽게 대량으로 제조하는 기술을 개발했다고 밝혔다. 이번 연구 성과는 나노기술 분야의 국제학술지 나노스케일(Nanoscale) 온라인판에 "Solvent-Free Synthesis of Cu2ZnSnS4 Nanocrystals: A Facile, Green, Up-scalable Route for Low Cost Photovoltaic Cells"의 제목으로 9월 게재되었다. 본 연구는 무독성 원료를 사용하여 생산 공정의 혁신을 주도하는 등 연구의 우수성 및 참신함을 인정받아 10월 21일자 표지논문으로 선정되었다. <그림 1> 지금까지 주로 개발된 박막태양전지는 CIGS(구리-인듐-갈륨-셀레늄) 또는 CdTe(카드뮴-테릴륨) 화합물에 기반한 것이다. 이들은 인듐, 갈륨, 테릴륨과 같은 희소 원소 또는 카드뮴과 같은 유해 원소로 이루어진데다 값이 비싸 상용화에 어려움이 있었다. 이들을 대체하기 위해 무독성 범용 원소만으로 구성된 CZTS(구리-아연-주석-황) 박막태양전지에 대한 관심이 전 세계적으로 뜨겁다. 지구상에 풍부한 원소를 사용하므로 원료비 절감은 덤으로 따라온다. 연구진 역시 무독성 원소인 CZTS 전지를 더 친환경적, 효율적으로 만드는 방법에 몰두했다. 이러한 박막태양전지를 만드는 데는 다양한 공정 방법이 있는데 연구팀은 그중 가격경쟁력이 높은 프린팅 방법을 사용했다. 프린팅 방법은 나노분말 원료를 잉크로 만들어서 인쇄하듯 태양전지를 만드는 방법으로 다른 공정에 비해 공정처리에 드는 비용이 저렴한 것이 특징이다. 지금까지 많은 국내외 연구자들이 CZTS 나노결정을 제조하기 위해 화학용액 반응법을 사용했다. 그러나 이는 유해한 화학용매를 사용하므로 제조과정에 주의가 요구되며, 높은 온도로 처리해야 하기 때문에 비용이 높고, 반응 후에 오염물질을 남기는 단점이 있었다. 연구팀은 오염을 피하기 위해 구리, 아연, 주석, 황만을 기계화학적으로 반응시켜 CZTS 나노결정을 합성하는 데 성공하였다. 원료 분말들을 큰 구슬(볼)들과 함께 통에 넣은 후 회전시켜 기계적 에너지를 주면 분말들은 분쇄되면서 에너지를 축적하게 되는데 그런 축적과정을 거쳐 자발적인 화학반응에 이르게 된다. 연구팀은 이때 발생하는 반응열에 의해 급격한 화학반응이 연쇄적으로 일어나는 원리를 이용했다. 이 방법은 고온 공정이 필요 없고 용매의 건조, 나노입자 분리, 유기물 제거 등의 공정 단계를 생략할 수 있어 공정 시간을 10시간 이상 획기적으로 단축시킬 수 있다. 연구진은 개발한 나노결정 잉크를 박막태양전지에 활용한 결과 고효율, 초저가, 프린터블 박막태양전지가 제조 가능함을 보여주었다. KIST 연구팀은 “개발된 박막태양전지 제조 기술은 무독성, 범용 원소들로 이루어진 나노결정 원료를 유해한 화학물질을 사용하지 않고 이차적인 오염물질의 생성 없이 대량 생산가능하다는 점에서 획기적”이라며 “또한, 제조된 나노결정이 대기 중에서 1년 이상 화학적, 구조적으로 안정하다는 것이 확인되어 분말공정을 이용한 박막태양전지의 상용화에 크게 기여할 수 있을 것”이라고 밝혔다. 이번 연구는 KIST의 기관고유연구사업 및 기초기술연구회 NAP(National Agenda Project)사업의 연구비 지원으로 수행되었다. <연구진> 이도권 박사 조소혜 박사 <참고 이미지 자료> 1. Nanoscale지 : 구리, 아연, 주석, 황으로 이루어진 원료 입자가 기계화학적 반응을 통해 CZTS(구리-아연-주석-황) 화합물 나노결정으로 합성되는 과정을 나타냄. <연구내용 요약용 이미지>
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어 - 지구상에 많은 값싸고 친환경적인 원소로 이루어진 박막태양전지 기술 개발 - 유해 화학용매 없이 기계적 반응만으로 태양전지 원료 생산 공정 혁신 유리와 같은 값싼 재료 위에 붙일 수 있는 얇은 태양전지인 박막태양전지는 원가가 저렴하고 다양하게 활용할 수 있어 미래 태양광 기술로 주목받고 있다. 하지만 제작공정이 까다로워 상용화에 걸림돌이 되어왔다. 국내 연구진이 인체에 유해한 화학 용매 없이 원료들을 기계적으로 회전시켜 박막태양전지에 쓰이는 나노결정을 개발했다. 개발한 공정은 기존 유해 화학용매를 사용한 것보다 10시간 이상 시간을 단축할 수 있고 원료로 사용된 원소들 역시 지구상에 많이 존재하는 원소로 이루어져 원료비 절감효과까지 있는 것으로 밝혀졌다. 한국과학기술연구원(KIST, 원장 이병권) 이도권 박사(광전하이브리드연구센터), 조소혜 박사(물질구조제어연구단) 공동 연구팀은 초저가 박막태양전지 제조에 필요한 나노결정(나노분말) 잉크를 유해 화학용매의 사용 없이 지구상에 많이 존재하는 원소만으로 손쉽게 대량으로 제조하는 기술을 개발했다고 밝혔다. 이번 연구 성과는 나노기술 분야의 국제학술지 나노스케일(Nanoscale) 온라인판에 "Solvent-Free Synthesis of Cu2ZnSnS4 Nanocrystals: A Facile, Green, Up-scalable Route for Low Cost Photovoltaic Cells"의 제목으로 9월 게재되었다. 본 연구는 무독성 원료를 사용하여 생산 공정의 혁신을 주도하는 등 연구의 우수성 및 참신함을 인정받아 10월 21일자 표지논문으로 선정되었다. <그림 1> 지금까지 주로 개발된 박막태양전지는 CIGS(구리-인듐-갈륨-셀레늄) 또는 CdTe(카드뮴-테릴륨) 화합물에 기반한 것이다. 이들은 인듐, 갈륨, 테릴륨과 같은 희소 원소 또는 카드뮴과 같은 유해 원소로 이루어진데다 값이 비싸 상용화에 어려움이 있었다. 이들을 대체하기 위해 무독성 범용 원소만으로 구성된 CZTS(구리-아연-주석-황) 박막태양전지에 대한 관심이 전 세계적으로 뜨겁다. 지구상에 풍부한 원소를 사용하므로 원료비 절감은 덤으로 따라온다. 연구진 역시 무독성 원소인 CZTS 전지를 더 친환경적, 효율적으로 만드는 방법에 몰두했다. 이러한 박막태양전지를 만드는 데는 다양한 공정 방법이 있는데 연구팀은 그중 가격경쟁력이 높은 프린팅 방법을 사용했다. 프린팅 방법은 나노분말 원료를 잉크로 만들어서 인쇄하듯 태양전지를 만드는 방법으로 다른 공정에 비해 공정처리에 드는 비용이 저렴한 것이 특징이다. 지금까지 많은 국내외 연구자들이 CZTS 나노결정을 제조하기 위해 화학용액 반응법을 사용했다. 그러나 이는 유해한 화학용매를 사용하므로 제조과정에 주의가 요구되며, 높은 온도로 처리해야 하기 때문에 비용이 높고, 반응 후에 오염물질을 남기는 단점이 있었다. 연구팀은 오염을 피하기 위해 구리, 아연, 주석, 황만을 기계화학적으로 반응시켜 CZTS 나노결정을 합성하는 데 성공하였다. 원료 분말들을 큰 구슬(볼)들과 함께 통에 넣은 후 회전시켜 기계적 에너지를 주면 분말들은 분쇄되면서 에너지를 축적하게 되는데 그런 축적과정을 거쳐 자발적인 화학반응에 이르게 된다. 연구팀은 이때 발생하는 반응열에 의해 급격한 화학반응이 연쇄적으로 일어나는 원리를 이용했다. 이 방법은 고온 공정이 필요 없고 용매의 건조, 나노입자 분리, 유기물 제거 등의 공정 단계를 생략할 수 있어 공정 시간을 10시간 이상 획기적으로 단축시킬 수 있다. 연구진은 개발한 나노결정 잉크를 박막태양전지에 활용한 결과 고효율, 초저가, 프린터블 박막태양전지가 제조 가능함을 보여주었다. KIST 연구팀은 “개발된 박막태양전지 제조 기술은 무독성, 범용 원소들로 이루어진 나노결정 원료를 유해한 화학물질을 사용하지 않고 이차적인 오염물질의 생성 없이 대량 생산가능하다는 점에서 획기적”이라며 “또한, 제조된 나노결정이 대기 중에서 1년 이상 화학적, 구조적으로 안정하다는 것이 확인되어 분말공정을 이용한 박막태양전지의 상용화에 크게 기여할 수 있을 것”이라고 밝혔다. 이번 연구는 KIST의 기관고유연구사업 및 기초기술연구회 NAP(National Agenda Project)사업의 연구비 지원으로 수행되었다. <연구진> 이도권 박사 조소혜 박사 <참고 이미지 자료> 1. Nanoscale지 : 구리, 아연, 주석, 황으로 이루어진 원료 입자가 기계화학적 반응을 통해 CZTS(구리-아연-주석-황) 화합물 나노결정으로 합성되는 과정을 나타냄. <연구내용 요약용 이미지>
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어 - 지구상에 많은 값싸고 친환경적인 원소로 이루어진 박막태양전지 기술 개발 - 유해 화학용매 없이 기계적 반응만으로 태양전지 원료 생산 공정 혁신 유리와 같은 값싼 재료 위에 붙일 수 있는 얇은 태양전지인 박막태양전지는 원가가 저렴하고 다양하게 활용할 수 있어 미래 태양광 기술로 주목받고 있다. 하지만 제작공정이 까다로워 상용화에 걸림돌이 되어왔다. 국내 연구진이 인체에 유해한 화학 용매 없이 원료들을 기계적으로 회전시켜 박막태양전지에 쓰이는 나노결정을 개발했다. 개발한 공정은 기존 유해 화학용매를 사용한 것보다 10시간 이상 시간을 단축할 수 있고 원료로 사용된 원소들 역시 지구상에 많이 존재하는 원소로 이루어져 원료비 절감효과까지 있는 것으로 밝혀졌다. 한국과학기술연구원(KIST, 원장 이병권) 이도권 박사(광전하이브리드연구센터), 조소혜 박사(물질구조제어연구단) 공동 연구팀은 초저가 박막태양전지 제조에 필요한 나노결정(나노분말) 잉크를 유해 화학용매의 사용 없이 지구상에 많이 존재하는 원소만으로 손쉽게 대량으로 제조하는 기술을 개발했다고 밝혔다. 이번 연구 성과는 나노기술 분야의 국제학술지 나노스케일(Nanoscale) 온라인판에 "Solvent-Free Synthesis of Cu2ZnSnS4 Nanocrystals: A Facile, Green, Up-scalable Route for Low Cost Photovoltaic Cells"의 제목으로 9월 게재되었다. 본 연구는 무독성 원료를 사용하여 생산 공정의 혁신을 주도하는 등 연구의 우수성 및 참신함을 인정받아 10월 21일자 표지논문으로 선정되었다. <그림 1> 지금까지 주로 개발된 박막태양전지는 CIGS(구리-인듐-갈륨-셀레늄) 또는 CdTe(카드뮴-테릴륨) 화합물에 기반한 것이다. 이들은 인듐, 갈륨, 테릴륨과 같은 희소 원소 또는 카드뮴과 같은 유해 원소로 이루어진데다 값이 비싸 상용화에 어려움이 있었다. 이들을 대체하기 위해 무독성 범용 원소만으로 구성된 CZTS(구리-아연-주석-황) 박막태양전지에 대한 관심이 전 세계적으로 뜨겁다. 지구상에 풍부한 원소를 사용하므로 원료비 절감은 덤으로 따라온다. 연구진 역시 무독성 원소인 CZTS 전지를 더 친환경적, 효율적으로 만드는 방법에 몰두했다. 이러한 박막태양전지를 만드는 데는 다양한 공정 방법이 있는데 연구팀은 그중 가격경쟁력이 높은 프린팅 방법을 사용했다. 프린팅 방법은 나노분말 원료를 잉크로 만들어서 인쇄하듯 태양전지를 만드는 방법으로 다른 공정에 비해 공정처리에 드는 비용이 저렴한 것이 특징이다. 지금까지 많은 국내외 연구자들이 CZTS 나노결정을 제조하기 위해 화학용액 반응법을 사용했다. 그러나 이는 유해한 화학용매를 사용하므로 제조과정에 주의가 요구되며, 높은 온도로 처리해야 하기 때문에 비용이 높고, 반응 후에 오염물질을 남기는 단점이 있었다. 연구팀은 오염을 피하기 위해 구리, 아연, 주석, 황만을 기계화학적으로 반응시켜 CZTS 나노결정을 합성하는 데 성공하였다. 원료 분말들을 큰 구슬(볼)들과 함께 통에 넣은 후 회전시켜 기계적 에너지를 주면 분말들은 분쇄되면서 에너지를 축적하게 되는데 그런 축적과정을 거쳐 자발적인 화학반응에 이르게 된다. 연구팀은 이때 발생하는 반응열에 의해 급격한 화학반응이 연쇄적으로 일어나는 원리를 이용했다. 이 방법은 고온 공정이 필요 없고 용매의 건조, 나노입자 분리, 유기물 제거 등의 공정 단계를 생략할 수 있어 공정 시간을 10시간 이상 획기적으로 단축시킬 수 있다. 연구진은 개발한 나노결정 잉크를 박막태양전지에 활용한 결과 고효율, 초저가, 프린터블 박막태양전지가 제조 가능함을 보여주었다. KIST 연구팀은 “개발된 박막태양전지 제조 기술은 무독성, 범용 원소들로 이루어진 나노결정 원료를 유해한 화학물질을 사용하지 않고 이차적인 오염물질의 생성 없이 대량 생산가능하다는 점에서 획기적”이라며 “또한, 제조된 나노결정이 대기 중에서 1년 이상 화학적, 구조적으로 안정하다는 것이 확인되어 분말공정을 이용한 박막태양전지의 상용화에 크게 기여할 수 있을 것”이라고 밝혔다. 이번 연구는 KIST의 기관고유연구사업 및 기초기술연구회 NAP(National Agenda Project)사업의 연구비 지원으로 수행되었다. <연구진> 이도권 박사 조소혜 박사 <참고 이미지 자료> 1. Nanoscale지 : 구리, 아연, 주석, 황으로 이루어진 원료 입자가 기계화학적 반응을 통해 CZTS(구리-아연-주석-황) 화합물 나노결정으로 합성되는 과정을 나타냄. <연구내용 요약용 이미지>
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어 - 지구상에 많은 값싸고 친환경적인 원소로 이루어진 박막태양전지 기술 개발 - 유해 화학용매 없이 기계적 반응만으로 태양전지 원료 생산 공정 혁신 유리와 같은 값싼 재료 위에 붙일 수 있는 얇은 태양전지인 박막태양전지는 원가가 저렴하고 다양하게 활용할 수 있어 미래 태양광 기술로 주목받고 있다. 하지만 제작공정이 까다로워 상용화에 걸림돌이 되어왔다. 국내 연구진이 인체에 유해한 화학 용매 없이 원료들을 기계적으로 회전시켜 박막태양전지에 쓰이는 나노결정을 개발했다. 개발한 공정은 기존 유해 화학용매를 사용한 것보다 10시간 이상 시간을 단축할 수 있고 원료로 사용된 원소들 역시 지구상에 많이 존재하는 원소로 이루어져 원료비 절감효과까지 있는 것으로 밝혀졌다. 한국과학기술연구원(KIST, 원장 이병권) 이도권 박사(광전하이브리드연구센터), 조소혜 박사(물질구조제어연구단) 공동 연구팀은 초저가 박막태양전지 제조에 필요한 나노결정(나노분말) 잉크를 유해 화학용매의 사용 없이 지구상에 많이 존재하는 원소만으로 손쉽게 대량으로 제조하는 기술을 개발했다고 밝혔다. 이번 연구 성과는 나노기술 분야의 국제학술지 나노스케일(Nanoscale) 온라인판에 "Solvent-Free Synthesis of Cu2ZnSnS4 Nanocrystals: A Facile, Green, Up-scalable Route for Low Cost Photovoltaic Cells"의 제목으로 9월 게재되었다. 본 연구는 무독성 원료를 사용하여 생산 공정의 혁신을 주도하는 등 연구의 우수성 및 참신함을 인정받아 10월 21일자 표지논문으로 선정되었다. <그림 1> 지금까지 주로 개발된 박막태양전지는 CIGS(구리-인듐-갈륨-셀레늄) 또는 CdTe(카드뮴-테릴륨) 화합물에 기반한 것이다. 이들은 인듐, 갈륨, 테릴륨과 같은 희소 원소 또는 카드뮴과 같은 유해 원소로 이루어진데다 값이 비싸 상용화에 어려움이 있었다. 이들을 대체하기 위해 무독성 범용 원소만으로 구성된 CZTS(구리-아연-주석-황) 박막태양전지에 대한 관심이 전 세계적으로 뜨겁다. 지구상에 풍부한 원소를 사용하므로 원료비 절감은 덤으로 따라온다. 연구진 역시 무독성 원소인 CZTS 전지를 더 친환경적, 효율적으로 만드는 방법에 몰두했다. 이러한 박막태양전지를 만드는 데는 다양한 공정 방법이 있는데 연구팀은 그중 가격경쟁력이 높은 프린팅 방법을 사용했다. 프린팅 방법은 나노분말 원료를 잉크로 만들어서 인쇄하듯 태양전지를 만드는 방법으로 다른 공정에 비해 공정처리에 드는 비용이 저렴한 것이 특징이다. 지금까지 많은 국내외 연구자들이 CZTS 나노결정을 제조하기 위해 화학용액 반응법을 사용했다. 그러나 이는 유해한 화학용매를 사용하므로 제조과정에 주의가 요구되며, 높은 온도로 처리해야 하기 때문에 비용이 높고, 반응 후에 오염물질을 남기는 단점이 있었다. 연구팀은 오염을 피하기 위해 구리, 아연, 주석, 황만을 기계화학적으로 반응시켜 CZTS 나노결정을 합성하는 데 성공하였다. 원료 분말들을 큰 구슬(볼)들과 함께 통에 넣은 후 회전시켜 기계적 에너지를 주면 분말들은 분쇄되면서 에너지를 축적하게 되는데 그런 축적과정을 거쳐 자발적인 화학반응에 이르게 된다. 연구팀은 이때 발생하는 반응열에 의해 급격한 화학반응이 연쇄적으로 일어나는 원리를 이용했다. 이 방법은 고온 공정이 필요 없고 용매의 건조, 나노입자 분리, 유기물 제거 등의 공정 단계를 생략할 수 있어 공정 시간을 10시간 이상 획기적으로 단축시킬 수 있다. 연구진은 개발한 나노결정 잉크를 박막태양전지에 활용한 결과 고효율, 초저가, 프린터블 박막태양전지가 제조 가능함을 보여주었다. KIST 연구팀은 “개발된 박막태양전지 제조 기술은 무독성, 범용 원소들로 이루어진 나노결정 원료를 유해한 화학물질을 사용하지 않고 이차적인 오염물질의 생성 없이 대량 생산가능하다는 점에서 획기적”이라며 “또한, 제조된 나노결정이 대기 중에서 1년 이상 화학적, 구조적으로 안정하다는 것이 확인되어 분말공정을 이용한 박막태양전지의 상용화에 크게 기여할 수 있을 것”이라고 밝혔다. 이번 연구는 KIST의 기관고유연구사업 및 기초기술연구회 NAP(National Agenda Project)사업의 연구비 지원으로 수행되었다. <연구진> 이도권 박사 조소혜 박사 <참고 이미지 자료> 1. Nanoscale지 : 구리, 아연, 주석, 황으로 이루어진 원료 입자가 기계화학적 반응을 통해 CZTS(구리-아연-주석-황) 화합물 나노결정으로 합성되는 과정을 나타냄. <연구내용 요약용 이미지>
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어 - 지구상에 많은 값싸고 친환경적인 원소로 이루어진 박막태양전지 기술 개발 - 유해 화학용매 없이 기계적 반응만으로 태양전지 원료 생산 공정 혁신 유리와 같은 값싼 재료 위에 붙일 수 있는 얇은 태양전지인 박막태양전지는 원가가 저렴하고 다양하게 활용할 수 있어 미래 태양광 기술로 주목받고 있다. 하지만 제작공정이 까다로워 상용화에 걸림돌이 되어왔다. 국내 연구진이 인체에 유해한 화학 용매 없이 원료들을 기계적으로 회전시켜 박막태양전지에 쓰이는 나노결정을 개발했다. 개발한 공정은 기존 유해 화학용매를 사용한 것보다 10시간 이상 시간을 단축할 수 있고 원료로 사용된 원소들 역시 지구상에 많이 존재하는 원소로 이루어져 원료비 절감효과까지 있는 것으로 밝혀졌다. 한국과학기술연구원(KIST, 원장 이병권) 이도권 박사(광전하이브리드연구센터), 조소혜 박사(물질구조제어연구단) 공동 연구팀은 초저가 박막태양전지 제조에 필요한 나노결정(나노분말) 잉크를 유해 화학용매의 사용 없이 지구상에 많이 존재하는 원소만으로 손쉽게 대량으로 제조하는 기술을 개발했다고 밝혔다. 이번 연구 성과는 나노기술 분야의 국제학술지 나노스케일(Nanoscale) 온라인판에 "Solvent-Free Synthesis of Cu2ZnSnS4 Nanocrystals: A Facile, Green, Up-scalable Route for Low Cost Photovoltaic Cells"의 제목으로 9월 게재되었다. 본 연구는 무독성 원료를 사용하여 생산 공정의 혁신을 주도하는 등 연구의 우수성 및 참신함을 인정받아 10월 21일자 표지논문으로 선정되었다. <그림 1> 지금까지 주로 개발된 박막태양전지는 CIGS(구리-인듐-갈륨-셀레늄) 또는 CdTe(카드뮴-테릴륨) 화합물에 기반한 것이다. 이들은 인듐, 갈륨, 테릴륨과 같은 희소 원소 또는 카드뮴과 같은 유해 원소로 이루어진데다 값이 비싸 상용화에 어려움이 있었다. 이들을 대체하기 위해 무독성 범용 원소만으로 구성된 CZTS(구리-아연-주석-황) 박막태양전지에 대한 관심이 전 세계적으로 뜨겁다. 지구상에 풍부한 원소를 사용하므로 원료비 절감은 덤으로 따라온다. 연구진 역시 무독성 원소인 CZTS 전지를 더 친환경적, 효율적으로 만드는 방법에 몰두했다. 이러한 박막태양전지를 만드는 데는 다양한 공정 방법이 있는데 연구팀은 그중 가격경쟁력이 높은 프린팅 방법을 사용했다. 프린팅 방법은 나노분말 원료를 잉크로 만들어서 인쇄하듯 태양전지를 만드는 방법으로 다른 공정에 비해 공정처리에 드는 비용이 저렴한 것이 특징이다. 지금까지 많은 국내외 연구자들이 CZTS 나노결정을 제조하기 위해 화학용액 반응법을 사용했다. 그러나 이는 유해한 화학용매를 사용하므로 제조과정에 주의가 요구되며, 높은 온도로 처리해야 하기 때문에 비용이 높고, 반응 후에 오염물질을 남기는 단점이 있었다. 연구팀은 오염을 피하기 위해 구리, 아연, 주석, 황만을 기계화학적으로 반응시켜 CZTS 나노결정을 합성하는 데 성공하였다. 원료 분말들을 큰 구슬(볼)들과 함께 통에 넣은 후 회전시켜 기계적 에너지를 주면 분말들은 분쇄되면서 에너지를 축적하게 되는데 그런 축적과정을 거쳐 자발적인 화학반응에 이르게 된다. 연구팀은 이때 발생하는 반응열에 의해 급격한 화학반응이 연쇄적으로 일어나는 원리를 이용했다. 이 방법은 고온 공정이 필요 없고 용매의 건조, 나노입자 분리, 유기물 제거 등의 공정 단계를 생략할 수 있어 공정 시간을 10시간 이상 획기적으로 단축시킬 수 있다. 연구진은 개발한 나노결정 잉크를 박막태양전지에 활용한 결과 고효율, 초저가, 프린터블 박막태양전지가 제조 가능함을 보여주었다. KIST 연구팀은 “개발된 박막태양전지 제조 기술은 무독성, 범용 원소들로 이루어진 나노결정 원료를 유해한 화학물질을 사용하지 않고 이차적인 오염물질의 생성 없이 대량 생산가능하다는 점에서 획기적”이라며 “또한, 제조된 나노결정이 대기 중에서 1년 이상 화학적, 구조적으로 안정하다는 것이 확인되어 분말공정을 이용한 박막태양전지의 상용화에 크게 기여할 수 있을 것”이라고 밝혔다. 이번 연구는 KIST의 기관고유연구사업 및 기초기술연구회 NAP(National Agenda Project)사업의 연구비 지원으로 수행되었다. <연구진> 이도권 박사 조소혜 박사 <참고 이미지 자료> 1. Nanoscale지 : 구리, 아연, 주석, 황으로 이루어진 원료 입자가 기계화학적 반응을 통해 CZTS(구리-아연-주석-황) 화합물 나노결정으로 합성되는 과정을 나타냄. <연구내용 요약용 이미지>
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어
유해 용매 사용없이 친환경 박막태양전지 대량생산 길 열어 - 지구상에 많은 값싸고 친환경적인 원소로 이루어진 박막태양전지 기술 개발 - 유해 화학용매 없이 기계적 반응만으로 태양전지 원료 생산 공정 혁신 유리와 같은 값싼 재료 위에 붙일 수 있는 얇은 태양전지인 박막태양전지는 원가가 저렴하고 다양하게 활용할 수 있어 미래 태양광 기술로 주목받고 있다. 하지만 제작공정이 까다로워 상용화에 걸림돌이 되어왔다. 국내 연구진이 인체에 유해한 화학 용매 없이 원료들을 기계적으로 회전시켜 박막태양전지에 쓰이는 나노결정을 개발했다. 개발한 공정은 기존 유해 화학용매를 사용한 것보다 10시간 이상 시간을 단축할 수 있고 원료로 사용된 원소들 역시 지구상에 많이 존재하는 원소로 이루어져 원료비 절감효과까지 있는 것으로 밝혀졌다. 한국과학기술연구원(KIST, 원장 이병권) 이도권 박사(광전하이브리드연구센터), 조소혜 박사(물질구조제어연구단) 공동 연구팀은 초저가 박막태양전지 제조에 필요한 나노결정(나노분말) 잉크를 유해 화학용매의 사용 없이 지구상에 많이 존재하는 원소만으로 손쉽게 대량으로 제조하는 기술을 개발했다고 밝혔다. 이번 연구 성과는 나노기술 분야의 국제학술지 나노스케일(Nanoscale) 온라인판에 "Solvent-Free Synthesis of Cu2ZnSnS4 Nanocrystals: A Facile, Green, Up-scalable Route for Low Cost Photovoltaic Cells"의 제목으로 9월 게재되었다. 본 연구는 무독성 원료를 사용하여 생산 공정의 혁신을 주도하는 등 연구의 우수성 및 참신함을 인정받아 10월 21일자 표지논문으로 선정되었다. <그림 1> 지금까지 주로 개발된 박막태양전지는 CIGS(구리-인듐-갈륨-셀레늄) 또는 CdTe(카드뮴-테릴륨) 화합물에 기반한 것이다. 이들은 인듐, 갈륨, 테릴륨과 같은 희소 원소 또는 카드뮴과 같은 유해 원소로 이루어진데다 값이 비싸 상용화에 어려움이 있었다. 이들을 대체하기 위해 무독성 범용 원소만으로 구성된 CZTS(구리-아연-주석-황) 박막태양전지에 대한 관심이 전 세계적으로 뜨겁다. 지구상에 풍부한 원소를 사용하므로 원료비 절감은 덤으로 따라온다. 연구진 역시 무독성 원소인 CZTS 전지를 더 친환경적, 효율적으로 만드는 방법에 몰두했다. 이러한 박막태양전지를 만드는 데는 다양한 공정 방법이 있는데 연구팀은 그중 가격경쟁력이 높은 프린팅 방법을 사용했다. 프린팅 방법은 나노분말 원료를 잉크로 만들어서 인쇄하듯 태양전지를 만드는 방법으로 다른 공정에 비해 공정처리에 드는 비용이 저렴한 것이 특징이다. 지금까지 많은 국내외 연구자들이 CZTS 나노결정을 제조하기 위해 화학용액 반응법을 사용했다. 그러나 이는 유해한 화학용매를 사용하므로 제조과정에 주의가 요구되며, 높은 온도로 처리해야 하기 때문에 비용이 높고, 반응 후에 오염물질을 남기는 단점이 있었다. 연구팀은 오염을 피하기 위해 구리, 아연, 주석, 황만을 기계화학적으로 반응시켜 CZTS 나노결정을 합성하는 데 성공하였다. 원료 분말들을 큰 구슬(볼)들과 함께 통에 넣은 후 회전시켜 기계적 에너지를 주면 분말들은 분쇄되면서 에너지를 축적하게 되는데 그런 축적과정을 거쳐 자발적인 화학반응에 이르게 된다. 연구팀은 이때 발생하는 반응열에 의해 급격한 화학반응이 연쇄적으로 일어나는 원리를 이용했다. 이 방법은 고온 공정이 필요 없고 용매의 건조, 나노입자 분리, 유기물 제거 등의 공정 단계를 생략할 수 있어 공정 시간을 10시간 이상 획기적으로 단축시킬 수 있다. 연구진은 개발한 나노결정 잉크를 박막태양전지에 활용한 결과 고효율, 초저가, 프린터블 박막태양전지가 제조 가능함을 보여주었다. KIST 연구팀은 “개발된 박막태양전지 제조 기술은 무독성, 범용 원소들로 이루어진 나노결정 원료를 유해한 화학물질을 사용하지 않고 이차적인 오염물질의 생성 없이 대량 생산가능하다는 점에서 획기적”이라며 “또한, 제조된 나노결정이 대기 중에서 1년 이상 화학적, 구조적으로 안정하다는 것이 확인되어 분말공정을 이용한 박막태양전지의 상용화에 크게 기여할 수 있을 것”이라고 밝혔다. 이번 연구는 KIST의 기관고유연구사업 및 기초기술연구회 NAP(National Agenda Project)사업의 연구비 지원으로 수행되었다. <연구진> 이도권 박사 조소혜 박사 <참고 이미지 자료> 1. Nanoscale지 : 구리, 아연, 주석, 황으로 이루어진 원료 입자가 기계화학적 반응을 통해 CZTS(구리-아연-주석-황) 화합물 나노결정으로 합성되는 과정을 나타냄. <연구내용 요약용 이미지>