채용 본부	채용 부서	채용분야 직급	연수제안서 (별청 참조)	채용예정인원	직무내용	지 원 자 격	문의처	접수처
					강릉분원			
	스마트팡융합연구센터	신규 식약처 용역과제 수행 (대사제 분석) Post-Doc.	1-1	1	LC-MS/MS 및 GC-ToF MS 기반 한약재 판별	강룡 근우 가능자 / 박사 학위 소지자 원예, 본석, 식물공장, 스마트팜 유경 험자		
	스마트팡용합연구센터	천연물 생리활성 분야 인턴	1-2	1	- 천연물의 생리활성 평가 및 분자 기전 연구 - 중물을 통한 여성 경선기 질환 모델에 대한 연구 및 여성경년기 질환 치료 효과의 천연물 규명	강룡 근무 가능자 / 학사, 석사 학위 소지자 생물학, 분자생물학, 약학		
강룡분원	스마트팡융합연구센터	스마트팜 온실 작물 생육/생리 분석 및 식물피노타이핑 계측, 분석 인턴	1-3	1	- 스마트뿐 온실 작물의 성육/생리 본석을 위한 관련 센싱 정지 제작 및 운용, 산물 데이터 관리 및 본석 - 식물 피노터이팅 경비를 이용한 식물 피늄 데이터 획득 및 본석 용 위한 경비 운용 및 시 활용 데이터 본석	강룡 근무 가능자 / 확사, 석사 학위 소지자 생명공학/컴퓨터공학/전기전자/기계		
	천연물소재연구센터	질병 타켓 제어를 통한 신약개발 연구 Post-Doc, 인턴	1-4	2	(1) 제조합 단백질 발현 벡터 제작 (gene doning) (2) 대규모 웹타이드/단백질 라이브라리 구축 및 스크리닝 (phage display) (3) 동물세포를 이용한 후보물질의 요농 평가 및 기전 규명	강룡 근무 가능자 / 석사 이상 학위 소지자 생화학, 구조성들학, 분자성들학	jhwon@kist.re.kr	jhwon@kist.re.kr
	천연물인포매틱스연구센터	항바이러스/항암면역 첨단 단백질 의약품 및 천연물 소재 탐색 Post-Doc, 인턴	1-5	2	LC-MS/MS 이용 프로테오믹스 분석, 유전자 클로닝, 단백질 정제, 제조합 단백질 발현, 효소 assay, 세포 배양	강종 근무 가능자 / 학사 이상 학위 소지자 생물/화학/의약/생화학 등 화학 혹은 생물 관련 전공		
	천연물인포매틱스연구센터	미생물 유래 대사체 및 천연물 소재 의 면역조절 효능 평가 및 기전 규명 인턴	1-6	1	1) 천연물 유래 단일화람을 및 미생물 유래 대시체 기반 면역세포 활성 평가 및 면역조절 작용기전 규명 리 신규 면역조절 소재 스크리닝 및 자가면역, 면역항암 관련 등 물모델 기반 연구 수행	강룡 근무 가능자 / 석사 학위 소지자 면역학		
	천연물인포매틱스연구센터	식품 및 천연물 분석을 위한 기기분 석법 및 NMR 분광법 개발 Post-Doc.	1-7	1	- 식품 및 천연을 내 유용 화학성분의 기기본석 및 화학구조 규명 연구 - 유기 혼합을 및 생체대시체 구조본석을 위한 NMAR 분광법 개발	강릉 근무 가능자 / 박사 학위 소지자 분석화학, 천연물화학, 분석약학		
					전북분원			
	구조용복합소재연구센터	고성능 복합재료 개발 및 이름 적용 한 기계 부종. 시스템 설계 Post-Doc. 또는 인턴	2-1	2	· 구조 배터리 용 CFIP 개발 / 레이테육수구조책 복합소재 개발 / 전기자동자 복합재료 부품 소재 및 구조 설계 / 난연성 단일소재, 국제은 화물성 등 복합소재 개발 등 1. 다기하성 (구조 배터리, km 부규 국중 제에 등) 복합재료 제조 및 시험 평가 - 북합재료의 기계 불성 및 가능성 (전도성, 유전용성, 난면성, 내 중작성 등) 항성 전 및 사람이 등이 하는 사람이 되었다. 그	학사 이상 기개공학과, 섬유공학과, 제표공학 과, 화학공학화 등		
	구조용복합소재연구센터	차세대 고분자 및 목합소재 합성/제 조/분석/평가 Post-Doc. 또는 인턴	2-2	2	(1) 화학/고분자 합성 및 복합소재 제조/분석 (2) 스마트 고분자 및 복합소재 (3) 소재의 구조-통성 상관관계 규명 (4) 이중소재 개단제어 및 접착	박사 또는 석사 화학, 재료, 화공, 신소제, 고분자, 섬 유, 기계 등 다양한 전공		
	구조용복합소재연구센터	진한경 복합재료 및 복합재료 성형 공정 개발 Post-Doc. 또는 인턴	2-3	2	. 유도기일을 이용한 복합제료 성행한경 구축 및 실증 2. 유도기일을 이용한 복합제료 기일 환경 시뮬레이션 3. 전면성유를 이용한 진환경 복합제료 제조기술 개별 4. 복합제료의 피괴 발경 및 전마 기동 연구 및 검사기술 개발	학사 이상 재료공학, 기계공학		
전북분원	구조용복합소재연구센터	에너지/환경 소재 개발 Post-Doc.	2-4	1	1. 반소소재 및 기타 유무기소재 제조/제집, 에너지 저장/변환 및 환경 달에 응용 연구 (1) 천고체 전치, 리용이온전치, 슈뮤커웨시티, 연료전치 등 에너 저 저장/전환 당치의 압격 및 전해를 등 관련 소체 연구 (2) 다광성소재 제조 및 다양한 기상/예상 흡착 연구 및 응용 연 구	박사 성유공학/고본지공학/제로공학/하학 공학/화학/나노공학/선소제공학 등	sang9419@kistre.kr	sang9419@kist.re.kr
	구조용복합소재연구센터	고성능 복합제료 개발, 제조 및 분 석, 평가 Post-Doc. 또는 인턴	2-5	2	1. 스프레이병식의 세라의 소재 열지폐코팅 (Thermal barrier coating) 2. 가능성 나노성유 제조 (전기병사, 용액병사, dip coating, coreshell 이유구조 성유, 도움속 가스 유동을 이용한 성유 개절 등) 3. 성유강의 복합소재 제조 및 물성 평가 등 시험 분석 4. 복합소재 강화용 필리 제조 및 복합소재 설계, 물성 평가 5. 유원요소 사물레이선	박사 또는 석사 기계, 재료, 화학, 고분자공학 등		
	구조용복합소재연구센터	친환경 고분자 설계 및 합성 Post-Doc. 또는 인턴	2-6	2	1) 진란경 예목시 수지 설계 및 합성 가 물리에스테르 기반 진환경 바이오물라스틱 합성 3) 프리프레그용 난연 애목시 수지 개발	학사 이상 고분자공학, 화학공학, 섬유공학, 재 료, 화학 등		
	구조용복합소재연구센터	복합소재용 신규 고본자 합성 및 개 발 Post-Doc 또는 인턴	2-7	2	1) 반소성유 복합소재용 신규 고본자 함성 및 복합소재 제조 - Dynamic boods 등 이용한 기억 기교 고본자 함성 - 소제의 고기능성(다가 지료, 형상 기억, 제출항) 즉히 및 본석 전성 및 제물을 열정하실 수지를 이용하여 (대위가 제고 및 제활 6 가능성 확인 기우지 급성 및 복합화를 등한 물성 항상 연구 - 캐나프 유럽 단당제 기반 천환성 바이오물리스틱 소재 개발 및 본액하 기속에 단어 기반 전환성 바이오물리스틱 소재 개발 및 본액 기수에 가는 에 이오물리스틱 소재 개발 및 본액 기수에 가는 에 이오물리스틱 기내 브 주물을 기반 불센드 소재 개발 및 필름 제조 가공공정 개발	박사 또는 석사 재료, 화학, 고본자공학, 화학공학		
	기능성복합소재연구센터	연료전지용 탄소지지체 및 축매 개발 Post-Doc. 또는 인턴	2-8	2	1. 고권정성 나노탄소 합성 및 활용 2. In-situ 기능화 기술 개별 및 표면 축매 활성 부여 3. 축매 활성점 제이 기술 및 목성 본석 4. 먼프런지 응용 전기화약 본석 & 병가	학사 이상 화공, 재료, 화학		

	기능성복합소재연구센터	기능성 나노소자 및 반도체의 전자 소자 응용, 전자파자배, 에너지 응용 Post-Doc. 또는 인턴	2-9	2	*이래 세가지 작무 중 매일 1. 교본자 복합소재 및 전자피자제 과제 수행 및 관리 2. 나노소제(근리는 OT, 20소제를 이용한 기능성 소자 제작 및 번도제 용항 3. 나노한소-급속복합소재의 고전도도 및 에너지 용용	막사 이상 1. 물리, 전자공학, 선소제, 제료공학 등 전공자 우대 2. 실험 유경함자, 과 제관리 유경함자 우대 (리쓰그리피, 전가족칭, 전자피자패족칭, 라만분 공, 에너지 응용 8)		
전북분원	탄소용합소재연구센터	고분자-탄소소재 전환 및 분석 Post-Doc. 또는 인턴	2-10	2	그분자 소재의 열분에 메커니즘 및 축매 역할 이에 그분자 단화 가동 및 메커니즘 이에 3. 최종 제조된 만소 소재의 난면 특성 확인 4. 표면 개절 및 복합재료/에너지소자 송용	학사 이상 화학, 화학공학, 고분자공학, 섬유공 학, 재료공학	sang9419@kist.re.kr	sang9419@kist.re.kr
	탄소용함소재연구센터	친환경 고분자 설계 및 합성 Post-Doc. 또는 인턴	2-11	2	1. 연구 보조, 시험 본석, 물성 평가 등 연구 지원 업무 2. 패성유를 이용한 민소소재 제조 및 특성본석 3. 패성유 기반 만소소제를 이용한 민소-세리의 복합제 제조 및 비성원을 세리의 한편 성구에 대한 보스 기관	회사 이상 제로, 화학, 화군 등		
	탄소용합소재연구센터	나노탄소소재 구조분석 및 그래핀 결함 분석 Post-Doc.	2-12	1	전전한미경을 이용한 그래판의 결함 분석 및 정량화 전호나노류브 구조 분석 및 물성 측정 나노소제의 에너지 및 복합소재 응용	박사 재료, 울리, 반도체, 금속		
	1			1	뇌과학연구소			
	뇌과학연구소장실	바이오센싱/바이오펜스/단일세포 생물을 리/기계생물학/미세유제학 Post-doc/인턴	3-1	3	- 단일 뇌세포의 기계 물리적 특성 (에: 모양, 부피, 밀도, 강도 등) 수지와 이를 이용한 뇌질한 전단 및 지료과정 모니터링 기술 개발 - 영향 이미의 시스템과 미세유과학을 접목한 단일세포 생물기계 물리적 특성 국정 불편을 개발 - 퇴행성 뇌물한 세포병양 모델 수립 - 뇌질한 전명 및 지료경과와 단일 뇌세포 단위의 표현형 특성 변 화의 장관관계 도출	- 착위: 인턴(학사, 석사)/Post-doc(박사) - 우디전공: 기계공학, 물리학, 성명과학, 성명공학, 컴퓨터공학, 인기 /전자공학 등	jhkang@kist.re.kr	
	뇌과학연구소장실	신경세포 신호전달 및 활성 기작 연구 인턴/Post-doc	3-2	2	식절편 신경세포 및 배양세포 등의 실험 재료에서, 세포의 활성과 시법스 기능이 산의 약물 주보물질을 포함한 외부 자극에 따라 변 화하는 것을 본거성물력, 바이라스체조. 전기생리력, 형콩이미광, 성화역, 동물행동실험 등의 기법으로 실험	- 확위: 인턴(석사)/Post-doc(백사) - 후대전용: 직무내용 유권분야	ckimya@kist.re.kr	
	뇌과학연구소장실	뇌과학 인턴/Post-doc	3-3	3	- in vivo imaging, 행동살형, 살림동물 뇌의 유전자 주입, 뇌질편 명예, 영상 데이터 확보, 산경회로 분석	- 학위: 인턴(학사, 석사)/Post-doc(박사) - 후대전공 * 성통학/신경과/약학 관련 (설점적으로 주요 신경 정로 구멍) * 설위된 중화/전자 관련 (정성 데이터 본석관련 소 프레어, 말고리를 7개발) * 골리/우작 관련 (신경회로 및 네트워크 작동 원리 모임되고 여운장) * 그의 (행동실험, 친기생리, 등)	kimj@kist.re.kr	뇌과학연구소장실 신청화 02-958-7033
	뇌과학연구소장실	유기화학, 의약화학 인턴	3-4	1	- 신규 유기 반응 및 방법론 개발 - 자폐 지료제 후보물질 합성 및 라이브러리 확보 - WRN 저해제 합성 및 라이브러리 확보	- 학위: 석사 - 우대전공: 직무내용 유관분야	alee@kistre.kr	
	뇌과학연구소장실	웨어라볼 전기화학 센서 및 패치형 센서 개발 Post-doc/인턴	3-5	3	- 마이크로/나노소재 기반 웨이러를 전기화학 센서 및 폐지형 센 서 설계, 제칭, 평가 기술 개발 - 고집도 전국 소재를 이용한 센성용 전국의 물리/화학적 특성 평가 가 - 전기화학 계인특성 및 축매특성 평가	- 확위: 인턴(작사, 석사)/Post-doc(박사) - 우대전공: 전자/전기, 기계, 화공, 생명공학, 화학	yijaelee@kist.re.kr	
뇌과학연구소	뇌과학연구소장실	신경과학 및 신경공학 인턴/Post-doc	3-6	2	망막 신경체포 광유전학 신경 신호 분석 또는 MEMS 기술을 이용 한 3차원 신경선국 제작	- 학위: 인턴(학사, 석사)/Post-doc(박사) - 우대전공: 성명과학, 선정과학, 전자공학, 기계공학, 재료공학, 의공학	maesoon.im@kist.re.kr	
	뇌과학연구소장실	계산 인지 및 시스템 신경과학 Post-doc/인턴	3-7	3	- 연광지능 기반 뇌과학 원리 발굴 - 생태계적 환경에서의 사회적 뇌 연구	- 학위: 인턴(학사, 석사)/Post-doc(박사) - 우대전공: 직무내용 유관분야	jeechoi@kist.re.kr	jhshin@kist.re.kr
	뇌기능연구단	계산신경과학, 인공지능 인턴/Post-doc	3-8	3	- 개산신경과학적 뇌회로 모델링 - 체회로 모델을 통한 인자/운동 가능 사물레이션 - 뇌회로 모델 기반 안공신경항 설계 및 작용	- 학위: 인턴(학사, 석사)/Post-doc(박사) - 전공무관, 학사인턴의 경우 진학예정자 우선 선발	taegon.kim@kist.re.kr	
	뇌기농연구단	소뇌신경과학, 생제이미징 연턴/Post-doc	3-9	3	- In vivo 이렇자 현미경을 활용한 신경세포 활성도 이미정 시스 영 구축 - 운동 제이 수행 중소뇌 신경회로의 In vivo 신경세포 활성도 즉 정 - 베이지안 주론을 통한 측정 결과의 테이터분석 및 해석	- 확위: 인턴(학사, 석사)Post-doc(박사) - 천공무관, 학사인턴의 경우 진학예정자 우선 선발	taegon.kim@kist.re.kr	
	뇌기능연구단	충동성 조절 기절 규명 연구 인턴	3-10	2	충동성 조절 기전 규명 연구와 관련 신경 전달 물질 HPLC 분석 및 in vivo 테스트 연구	- 학위: 학사 - 우대전공: 적무내용 유관분야	him@kist.re.kr	
	뇌기능연구단	in vivo 대뇌 신경생리학 인턴	3-11	2	- 유전자 번이 동물의 권리 및 유전자 감식 - 성장관류를 통한 뇌 수울 및 결편 제작 - 자동화면미경을 활용한 영상 획득	- 학위: 학사 - 생명과학 일반, 의학, 약학, 보건학 등	sooyoung@kist.re.kr	
	뇌기능연구단	in vivo 대뇌 신정생리학 인턴	3-12	2	- AAV 비이리스를 활용한 활성센서 단백질의 발현 - 생리학적 기법(전기생리학, 세도영상학)을 활용한 시각세도 활 성 측정 및 시각 행동실험 수행	- 학위: 석사 - 우대천공: 신경과학 전공자 특히 전기생리학 경험 자 우대 - 신경과학, 생명과학 일반, 의학, 약학, 보건학 등	sooyoung@kist.re.kr	
	뇌용합기술연구단	센서 개발(세부내용 연수제안서 참고) Post-doc/인턴	3-13	3	- 행약에서 국미양의 뇌단백질을 검출할 수 있는 센서 개발 - MRF 혹은 LSPR 기반의 청광다용 집을 센서 개발 - 용에 불일 수 있는 패지형 웨이라볼 센서 개발 - 계내 답입형 전자에 개발 - 2자원 물질을 이용한 가스 센서 개발	- 확위: 인턴(학사, 석사)/Post-doc(박사) - 후디전용: 진자공학, 의용학, 회학공학, 성명공학, 기계공학, 제료공학 등	shleekist@kist.re.kr	

	뇌질환극복연구단	알츠하이머 진단을 위한 센서 물질 개발 인턴	3-14	1	뇌질한 진단형광프로브를 알쯔하이어병 진단 PET이미징 프로브 로 적용 등을 실명을 위해 전구체를 합성 하고 원자력 의학원에서 의 방사성 등이원소를 도입 FISPET를 합성하여 PET영상 연구	- 학위: 석사 - 우대전공: 유기화학	gsnam@kist.re.kr	
	뇌질환극복연구단	뇌질환의 분자 및 세포학적 기전 연구 Post-doc	3-15	1	- 퇴명성 뇌질환 환자의 뇌조직에서 발균인 절한 관련 유전체을 위성성 뇌손상 등통모델에서 확인하고 연관된 기전을 규명 - 신권체포와 비신원체포 사이의 작용 기전 연구를 위해 computational neuroccience&modeling을 수행	- 학위: 박사 - 우디씨항: 신경과학 전공자, 전기생리학적 (electrophysiology) 측정기술을 소지한 자 지원자격장고	hoonryu@kist.re.kr	
뇌과학연구소	뇌질환극복연구단	시념스 가소성, 학습 및 기억, 인지 유연성 연구 인턴/Post-doc	3-16	2	- 신경세포 시법스 가소성 연구를 통한 학습 기억 기전 연구 - 마우스 모델을 활용한 인치가는 및 자폐기전 연구 - NOS를 이용한 기억 개념 연구 - 인치기능 마우스 모델의 제작, 관리, 유지 - 뇌세포 조대배양, 뇌조직 제작 및 공조점 이미정	- 확위: 인턴(학사, 석사)/Post-doc(박사) - 우대전공: 성명과학 전분야, 신경생물학, 생화학, 의과학, 의약학, 또건학 등	mpark@kist.re.kr	뇌과학연구소장실 신정화 02-958-7033 Jhshin@kist.re.kr
	뇌질환극복연구단	신약개발 인턴	3-17	1	- 산규 화항을 스크리닝 및 약을 유효성 평가 진행 - 단백질 기반, 세포 기반 생리활성 아세이 수행 - 동물모델 약효 평가 및 등을 행동실점 수행	- 학위: 석사 - 우대전공: 화학, 생물학, 의약학 및 관련분야 전공 자	slee 19@kist.re.kr	
	뇌질환극복연구단	유전체 교정 기술 개발 및 활용 인턴/Post-doc	3-18	2	- 뇌집한 관련 유전자 돌면변이의 유전략적 기능 연구 - 정말 열기 교명 기술을 활동한 유전자 치료계 개발 연구 - 자세대 유전제 교정 기술의 분석법 개발을 통한 정확성 평가 연 구	- 학위: 인턴(학사)/Post-doc(박사) - 우디전공: 성물학 관한 건분야 (분자생물학, 생화 학, 성명공학, 의약학)	kylim@kist.re.kr	
	뇌질환극복연구단	자폐치료제 후보물질 합성 및 개발 인턴	3-19	2	신규 라이브러리 화합물의 합성 및 SAR연구와 관련 기전연구	- 확위: 확사 이상 - 우대전공: 직무내용 유관분야	bsjeon@kist.re.kr	
			l .		차세대반도체연구소	L		l .
	광천소재연구단	변도체광전소지, 영자광소자 및 광성유 센서 인턴	4-1	1	- 양지공원 제작 및 특성 평가 (Quantum light source) - 자세대변으로 개가 변경소수 및 및 분급 성호적용 연구 Semiconductor-based existent devices) - 이자원 양치소가/장면소지의 점집적되로 내 등학 및 전트를 (Respation into photonic circui) - 공성유 센서를 이용한 신개념 가메라-프리 테비게이션 시스템 - 딥러성 기반의 공센서 정확도 당상 알고리즘 개발 및 점증, 평가	- 학사학위 소지자(취득 예정자) - 전기, 전자, 물리, 재료 관련 전공자 우대 전기, 전자, 물리, 재료 관련 전공	hwmoon@kist.re.kr	
	광천소재연구단	나노소제 기반의 조고속 광정보 소자 인턴 또는 Post-Doc.	4-2	2	-나노소제의 공학적 비선형성 기반의 초고속 공정보 소자 연구 - 3차열 그래말의 합성 및 나노소제 기반의 공전자 소자 제작 공정 기록화 공전소자 구면 및 optical communication 시스템의 구성 과 경기	선턴, 학사 또는 석사, 포막, 택사 학위 소지자 전자공학, 물리막, 선소제공학 등 권현학과 산업에 근권 경험 등 전자공학, 물리막, 신소제공학 전자공학, 물리막, 신소제공학	ysong@kist.re.kr	-
	광전소재연구단	레이저를 이용한 거리측정 시스템 통합 Post-Doc.	4-3	1	- 청녹레이저 및 센서 측정 시스템을 통합하여 레이지 기리 측정 - DPSS데이지의 개선, 중에설계, 수물기구 설치, 전자 정치/에서 시스템 통합 과정 - 원장 숙정 및 data 해석 등	.박사 학위 소지자 - 물리학, 전기/전자공학 관련 전공 선호 물리학, 전기/전자공학	jdsong@kist.re.kr	
	광전소재연구단	Single-Photon Detectors/Sensors (단일광자 검증기/센서) Post-Doc. 또는 인턴	4-4	2	-Single-Photon Detectory/Sensors 측정/분석, 시뮬레이션, 설계 등의 업무 수행	전자공학, 반도체 관련 전공자 우대 -인한: 학사 또는 석사 학위 소지자(취득 예정자) -포막: 박사 학위 소지자(취득 예정자) 전자공학, 반도체 관련 전공	mj.lee@kist.re.kr	
자세대반도체연구소	광전소재연구단	뉴로모텍 광전소자 Post-Doc.	4-5	1	- (CVD (initiated chemical vapor deposition) 기반 고용질 고본 자 유전체 및 ferroelectric 고본자 유전체 힘보 - 너노물은 (조사원 제로) 및 고본자 유전체 기반 뉴모모틱 광천소 자 제작 (Neuromorphic image sensor, MAC machine based on crossbar array) - 뉴로모틱 광천소자 기반 머신비전 응용 수행	- 박사 학위 소지자 또는 취득 예정자 - 제료공항, 회학공항, 전기전자공학 전공자 우대 - (자인 기반 교원 학형 송원형자, 누로모픽 소자 제작 유경험자, 누로모픽 속장 시스템 유경험자 우대 재료공학, 화학공학, 전기전자공학	cschoi91@kist.re.kr	차세대반도제연구소 서유리 02-958-5102 024369@kistre.kr
	광전소재연구단	차세대 저차원 나노 반도체 광전자 소자 개발 Post-Doc.	4-6	1	-나노 반도제 0차원 양자점 기반 광전자 소자 개발 -2자원 나노소제와 음목합된 BSI CMOS SPAD 기술 개발 -공전자 소자 측정 및 분석, 연구 결과 논문/특허 작성	- 박사 학위 소지자(예정자) -재료공학, 물리학, 전기전자 전공 재료공학, 물리학, 전기전자	dkhwang@kist.re.kr	
	스핀융합연구단	1) 양자 반도체 신소재 개발 2) 다양 한 박아 제작 및 물성 연구 Post-Doc. 또는 인턴	4-7	2	· 약자 반도체 신소재 개발 - MBS를 이용한 백막중국 및 물리적 박리법을 이용한 박막 성장 및 물집의 목성 즉정(분석 - 자성(위상 물질 반면으발스 물질 등을 비롯한 다양한 박막의 전 하수송 특성, 전자구조 등 즉정 및 분석	- 물리 혹은 관련분야 전공자 - Post-Doc: 박사학위 이상 학위자 또는 취득 예정 자 -인턴: 학사 학위 이상 학위자 또는 취득 예정자 물리 혹은 관련분야 전공자	hryu@kist.re.kr	
	스핀융합연구단	나노소재 및 나노전자소자 (Post-Doc 또는 인턴	4-8	2	- 나노자성소재의 기초 용성 연구 - 나노소재를 활용한 소민/전자소자 응용 연구	- 물리, 신소제/제료공학, 전자/전기공학 전공자 - 포막: 백사학위 소지/취득예정자 인한: 학사학위 또는 석사학위 소지/취득예정자 물리, 신소제/제료공학, 전자/전기공 학 전공자	junwoo@kistre.kr	
	양자정보연구단	양자컴퓨터, 양자정보, 양자측정 Post-doc.	4-9	1	1. 큐베트 학장성을 가진 소자를 이용한 양자 측정 기조 연구 2. S테비트 소규모 점점함 양저프로젝서에서 양자오류장정 기술 개발	전기/전자/물리 관련 박사 전공자 우대 전기/전자,물리	jh_lee@kist.re.kr	

	양자정보연구단	양자정보 Post-doc.	4-10	1	의지점류팅 및 시물리에선: 공자의 Critical Angular Momentum (CAM) 상태를 기반으로 한 고자원 양자계산 및 약자 알고리등을 구현의의 양자회관가를 본 상태적인 문제를 해결 - 양자동안 및 양자 네트워크 - 본민하고의 대학 (1.5 km 파강에서 다 왕자 전자점원산대를 준비하고 이를 이용적이 항후 경험유기간 장기 경자 네트워크 구원을 위한 기조 및 송용 연구 수명 - 양자선 나라는 모 가장입원에 다 (195도 N0M) 상태 등을 이용한 다음 파라미터 공시 국정 및 분선형 양자선 네트워크 구원을 위한 기조 및 양자원학 분야의 연구를 위한 기조 및 양자원학 분야의 연구를 위한 기조 및 양자원학 분야의 연구를 위한 기조 및 양자원학 분야의 연구 등 위에는 기조 및 양자원학 분야의 연구 등 위에는 기조 및 양자원학 분야의 연구 등 시한 기조 제공 에 이외에도 최신의 양자원보 및 양자광학 본 대학 인구 등 시한 기조 제공 기관	- 이학 또는 공학 박사학의 소지자 또는 취득 애정자 - 양자정보본야 연구경력자 우대 이학, 공학	hyangtagJim@kistre.kr	
자세대반도체연구소	인공뇌용합연구단	뉴로모꿱 컴퓨팅/연공지능 알고리즘 Post-Doc/인턴	4-11	2	1) 뇌기번 뉴럴 네트워크 취직화 2) 뉴모모픽 용용 개발 3) SNN 작음 알고대증 개발 4) 뉴로모픽 하드웨어 및 멋지 디버이스 활용	1) Post-Doc: 박사 학위 소지자, 전기/전자/컴퓨터 관련 전공자 우대, 인공지능 관련 연구 경영자 우대 가 인단 석사, 학사 학위 소지자, 전기/전자/컴퓨터 관련 신공자 우대, 인공지능 관련 연구 경영자 우대 전기/공학, 전자공학, 컴퓨터공학, 인공지능	seong sik park@kist re kr	차세대반도체연구소 서유리 02-958-5102 024369@kist.re.kr
	인공뇌용합연구단	차세대 뇌과학 기반 인공지능을 위 한 뉴로모픽 소자/시스템 연구 Post-Doc/인턴	4-12	2	- 멀티모달 뉴젠 및 시냅스 소자 개발 - 신청모사 소자 제작 및 특성 평가	인턴: 관련 전공 학사 이상 학위자 Post-Doc: 관련 전공 박사 이상 학위자 율리학, 재료공학, 전자공학	slee_eels@kist.re.kr	
	자세대반도체연구소장실	반도체 3자원 적충 및 2D 기반 소자공정 포닥	4-13	1	화합을 및 Si(Ge) 반도체를 이용한 monolithic 3D integration 공 경기술 개발 - 예외및 및에의 본당을 이용한 3차원 반도체 적중 공정 기술 개발 - 적중은 반도체 상부중의 전기적 특성 분석 및 평가 - MgO를 이용한 상부 반도체 중의 surface orientation 제이 - 3-terminal artificial (optoelectronic) 시념스 소자 및 응용 기술 개발	1. 관련 전공 박사학위 소지자 혹은 확위 취득 예정 자 2. 반도체 소자 공정 유경험자 우대 반도체 소자 공정 유경험자 우대	mbeqd@kist.re.kr	
					AI•로봇연구소			
	Al·로봇연구소장실	CCTV 영상 분석 인턴/포닥	5-1	2	- CCTV 기면 서원/AR당 추적 기술 개별 - Color Consistency 처리 기술 개별 - RGB 고속 카메라 기반 속도 추정	(포닥) 직무내용 중에서 한가지 이상 전문지식 경험 이 있으신 분 우대 (인턴) 작무내용 중에서 한가지 이상 주제로 연구 열 정이 있으신 본 우대 찬가전자컴퓨터 전공 우대	drjay@kist.re.kr	
	인공지능연구단	안공지능 및 컴퓨터비전 핵심 기술 연구 포닥/전편	5-2	2	- 영상/비디오 내 계체 검출/추적 (Object detection/tracking) 연구 금리당 기반 전체 재식별 (re-identification) 연구 - 물리당 기반 비디오 데이터 본석 연구 - 멀티모모 테데이터 처리 및 본석 업무 - 포디> 상기 연수 내용 중 한 가지 이상에 대하여 주도적인 연구 수행 - 인턴> 월의를 통해 상기 연수 내용 중 한 가지 이상에 대하여 연구 참여	< 모다. 박사 학위 소지자(예정자 포함)로서, 소프트 웨어 개발 유경험자 우대, 데이터 처리 분야 유 경험자 유대 (인탄 - 학사/석사 학위 소지자(예정자 포함)로서, 소프트웨어 개발 유경험자 우대, 데이터 처리 분야 유경험자 우대 〈포막,인탄·건기전자/컴퓨터/연공지능/통계 전용 우대 (기타전공 가능)	hschoi@kist.re.kr	
	인공지능연구단	메타버스, 스마트 글래스, 홀로그램, 30 포닥/인턴	5-3	2	- 다마 글래스, 홍코그램, 30 디스플레이 등의 정단 미디어 영상인정치리, 현대당, HCI 기술 연구 - 스마트, 글래스, 홍코그램, 30 디스플레이 등의 정단 미디어 시스템 및 경학계 개발 연구 - 연공지능 기반 사용자 용사점/자세/위지/등착/되도 추정 기술 연구 - 점단 미디어의 제감종질 및 유민백터 연구	- 정단 미디어 SW/HW 전분야 개발 유경점자 우대 - 페이션 Unity3D, Unreal, OpenGL, OpenCV 유경점자 우대 AV선자/정보통신/컴퓨터/디스플레이/공학/플리	kangmkgb@gmail.com	
AI∙로봇연구소	연공자능연구단	실환경 영상 내 이상행동/상황 당지 모닥, 인턴	5-4	2	1) 모두 연구원 1인 - 답리성 기엔 실환경 영상 내 이상행동/상황 당지 역성 기술 연 구 2) 인턴 연구원 1인 - 답머닝 기반 실환경 영상 내 이상행동/상황 당지 일고리즘 검증 (참고 홈페이지: http://wig.kist.re.kr)	1) 포덕 연구원 1인 - 백시 이상 확의 소개시여정자 포함)로서, 소프트 역에 개발 유경험자 우대, 컴퓨터비전, 신로처리 본 이 유경험자 우대, 강민턴 연구원 1인 - 학사 이상 확의 소재시여정자 포함)로서, 소프트 역에 개발 유경험자 우대, 컴퓨터비전, 신로처리 본 이 유경함자 우대	hskim@kist.re.kr	Al-로봇연구소 홍은미 02-958-5302
	인공지능연구단	시각자능 / 컴퓨터비전 포다/인턴	5-5	2	- 인공지능 기반 대상지 안면 분석을 통한 감정 인식 기술 연구 개발 - 연공지능 기반 대상자 감정 판단을 위한 눈동자 빨림 및 논경박 당 편간 기술 연구 개발 * 성기 작무 내용 중 한가지 이상 주도적인 연구 수행 * 청조 : https://wj.kist.re.kr	포단연구원: 박사취위 소지자, 팀러닝 기반 신호(영 성) 용성, 센서 등) 치리 분야 유경형자 우대 인턴연구원: 석사위위 소지자, 팀러닝 기반 신호(영 성) 용성, 센서 등) 지리 분야 유권형자 우대 전기/전자/컴퓨터 전공(기타건공 가능)	gpnam@kist.re.kr	024333@kistre.kr
	인공지능연구단	답러닝, 컴퓨터 비전 인턴	5-6	2	- 일부 시아 공유가 있는 다시점 영상 정합 알고리즘 구현 및 테 스트 - 단일 시점 보행자 추적 결과와 다시점 영상 정합 정보를 모두 활용한 다시점 신원 재식별 알고리중 구현	학사 이상 학위 소지자(예정자 포함) 천기/천자/컴퓨터 전공 우대 (기타전공 가능)	haesol@kist.re.kr	
	연공자능연구단	설명가능시 및 디지털트원 포닥/인턴	5-7	3	※ 이래 4개 분야 중 한 분야를 택하여 지원 □ 설명가능시 분야 (원약 1) 비대오 시 개인 인간들을 구청 비대오 기반 실내 운동을 국정 기술 개발 - 지체 주청 및 운동 모니터링 기술 개발 - 경우 모니터링 처음 실시간 지리 및 성능 평가 (원약 2) 모디오 시기한 인간들을 주경 - 모디오 기반 실내 이벤트 주청 기술 개발 - 모디오 기반 실내 이벤트 주청 기술 개발 - 모니터링 처음 실시간 지리 및 성능 평가 (원약 3) 설명가는의 자리 인간 인간들은 자리를 가장 기술 개발 - 모니터링 처음 실시간 지리 및 성능 평가 - 일반들상 시계반 인간들은 주정 기술 개발 - 일반들상 시기반 인간들은 주정 기술 개발 - 일반들상 기반 인간 발생 등 모 기타링 시선되고 개선 - 모니터링 처음 실시간 지리 및 성능 평가 - 모니터링 제송 실시간 지리 및 성능 평가 - 모니터링 제송 실시간 지리 및 성능 평가 - 미지팅트릴 받아 (원약 4) 스마트를 나타 기술 기발 - 보이트를 사다 기술 개발 - 사회되는 기상 관망 - 사회되는 기반 스마트를 하 기울 기반 기술 개발 - 사회되는 기반 스마트를 하 기술 기반 기술 개발 - 사회되는 기술 기반 스마트를 하 기울 기반 기술 함께 - 생기를 구한 스마트를 하 기울 기반 및 성능 평가	- 안공지능/컴퓨터/전자/기계 관련 학과 학위 소지자 - 세/스마트통/6/17대통트》(P/2건봉동안식 관련 연구 및 S/W 개발 관원 자주의 연공지능/컴퓨터/전자/기계 관련	yoo@kist.re.kr	

	ı	T	1			I		
	안공지능연구단	연공지능 전분야 연단/포덕	5-8	5	1)우선 책용 - 딜러성 핵용(대기주도, 최적화, 지속/연합, 성성 모형, 딜러성 거 보 모형명 (영상/점군 데이티, 뉴랄런데팅), 컴퓨터비전(제처럼을/ 면식/주국, 제서분, 패먼인식, 성제인식, 얼굴 표장/신체육자/원칙, 이성등등/성황 본네, 컴퓨터 그래픽스(사람/ 공간/소통자/원칙, 이성등등/성황 본네, 컴퓨터 그래픽스(사람/ 공간/소통자/원칙(미리는 교육인원만화), 로봇지상(필디드)을 한, 반리로환, 메리아스/AN/RAV, 원칙원, 리지막트(미리는), 리웨션 상, 큐먼택티, 헬스케어(영상/등작분석, 스포스웨이, 웨이러분, 타대, 원생예측, 기원반 작용 - 인공자는 원칙 및 응용 기술 전분여 인공자는 원칙 및 응용 기술 전분여 - 인공자는 원칙 및 응용 기술 전분여 - 대학교(소리지원들은 https://wiskitze.br - 딜리식병을 https://wiskitze.br - 디지팅류면 https://www.xhuumanlab.net - 문합원실 https://www.xhuumanlab.net - 문합원실 https://www.xhuumanlab.net	- 연공지능/컴퓨터/전자/기계 관련 학과 학위 소지자 - 파이번 - C/C++ , Java 등 프로그레일인이 가능자 - PyTorch TensorHow 등 답리당 라이브리리 활용 경험자 우대 연공지능/컴퓨터/전자/기계	hslim@kistre.kr	
	지능로봇연구단	SLAM, 센서용협 인턴/포닥	5-9	2	1. 선석 용립 기반 이동로봇 지도 작성 및 SIAM 기술 개발 2. 다수 로봇 지도 응유 기법 개발 (Collaborative SIAM) 3. 다용 지도 통한 표면 및 위자 주의 경기 개발 -비고: 상세 연구분야 및 직무대용 범위는 혐의 후 결정	. 축하, 포다,에서 이상, 인턴/마사 이상 (졸업예정자 포함) - 선광, 로보되스, 컴퓨터, 전기전자, 기계 등 관련 본 아 있어서 알고리를 연구 개발 유경형자 우대 (필수아 남) 모보되스, 컴퓨터, 전기전자, 기계 등 관련 본야	junsik.kim@kist.re.kr	
	지능로봇연구단	영상기반 3차원 복원, 영상이해 인턴/포닥	5-10	2	1. 1선서 정보 용합을 통한 온라인 디지털 트월 생성/관리 기술 개발 발 2. 선서용합 기반 설시간 3차원 공간 reconstruction 3. 사용자 및 물레의 3차원 추적 기술 개발 내고: 상세 연구분야 및 역무내용 범위는 혐의후 결정	. 따라, 마사 이상 (졸업에정자 포함) - 전공, 관련 분야 (전산, 컴퓨터, 진기전자, 로봇 등) - 테리닝 알고리즘 개발 또는 ROS 활용 유경원자 우대 (필수 아님) 전산, 컴퓨터, 전기, 전자, 로봇 등 유관분야	junsik.kim@kist.re.kr	
	지능로봇연구단	로봇지능 인턴	5-11	2	* 로봇 조작작업을 위한 모바일 때나름레이션 가슴 개발 및 멀티로 첫 경 생성 .로봇 조작작업을 위한 테스크-모션계획 알그리즘 개발 .로봇 모바일때나름레이터의 바한 기반 파지 계획 및 제이 알그리즘 개발 .목록 정그 등에서 운용되는 멀티 로봇의 경로 생성 및 제이 알그리즘 개발 .로봇 가상환경 구축 및 사물레이션 수행 .ROS 패기지 개발 및 로봇 시스템 통합	- 졸업예정자 혹은 타기관 근무경력 6개월 미만 연 구자 - 으며일·때니플레이터 path planning 및 제이 기술 개발 영화자 - Python, C, C++ 등 SW 프로그레잉 및 ROS 유경험 자 로봇공략,전기전자,컴퓨터,기계 또는 관련관공	ckim@kist.re.kr	AL로보연구소 홍라비 02-958-302 02433@kistre.kr
Al•로봇연구소	지능로봇연구단	컴퓨터비전 또는 로봇지능 인턴	5-12	2	- DNN 기반의 컴퓨터비전 알고리즘 개별, 또는 - 로봇 Navigation 및 로봇 Planning 지능 S/W 개발	- 인공지능 및 로봇지능 S/W 연구개발에 열정이 있 으신 분 - 자바/파이선 활용 경험자 컴퓨터/전기전자/정보통신/기계	skee@kist.re.kr	
	지능로봇연구단	로봇 제이/로봇 비전 Post-Doc/인턴	5-13	3	로봇 시스템(엔드템드 수술 교본, 자동 경제 제취 로봇, 로봇 앤드)의 영상 기반/회 기반 자동 제이 연구 수술 로봇 시스템 등는 수술 로봇 시스템 등을 수성 등을 가지 하는 기료 이 경기에 되었다. 그 자동 경제 제취 로봇 시스템 의명 성기를 가지 되었다. 그 자동 경제 제취 로봇 시스템 의명 기반 설시간 영상 처리 알고리를 및 영상 기반/회 기반 제어 연구 -로봇 앤드 시스템 등 성상 기반 제어를 위하여 영상 처리 알고리를 및 실시간 로봇 제어 연구 - Table 2018 기반 제계 제어를 위하여 영상 처리 알고리를 및 실시간 로봇 제어 연구 - Table 2018 기반 제어를 위하여 영상 처리 알고리를 및 실시간 로봇 제어 연구 - Table 2018 기반 제어를 위하여 당상 처리 알고리를 및 실시간 로봇 제어 연구 - Table 2018 기반 제어를 위하여 당상 처리 알고리를 및 실시간 로봇 제어 연구	. 로봇 제이 경험자 우대 - 정상기반 로봇 제이 경험자 우대 - (소(소) 프로그램 가능자 우대 - 시스템 제이 검험자 우대 - Linux 사용 가능자 우대 기계, 전기전자, 컴퓨터 공학, 로보틱스, 메카트로닉 스 의공학 등	swyang@kist.re.kr	
	지능로봇연구단	로봇 제어 인턴, 포닥	5-14	2	이렇의 내용 중 혐의 후 선택 가능 ■ Wheel-legged Humanoid Robot의 전신 제어 알고리즘 개발 - 통역학 및 최정화(P) 기반 전신 범관스 제어기술 및 경로 주중 알고리즘 개발 ■ Point foot을 갖는 휴머노이드의 2측 보행 알고리즘 개발 ■ Point foot을 갖는 휴머노이드의 2측 보행 알고리즘 개발 ■ Capture point/ZMP 중 2측 보행의 단청성 기준에 대한 이해 모델 데에 되는 데에 이번 모른 제어 되는 데에 이번 모른 제어 되는 지수 및 통신 제어 기반 모터 제어 라마요 기반 실신진 제어환경 구축 및 통신 제어 기반 모터 제어 라마요 기반 실신진 제어환경 구축 및 통신 제어 기반 모터 제어 라마요 기반 실신진 제어환경 구축 및 통신 제어 기반 모터 제어 용패이지 참조 : https://sites.google.com/view/humanoids-kist	- 로봇 및 제어 공학 이수 또는 관한 연구 경험자 - C/C++ 프로그램 경험자 - Linux/ROS 경험자 기계/전기/전자/로봇/여키트로닉스 등	oyh⊜kistre.kr	
	지능로봇연구단	지능로봇 및 메닥버스 포닥/건턴	5-15	2	○ 연수 내용: ※ 이래 3개 본다 중 한 본다를 택하여 지원 □ 지능로봇 분야 (본여 1) 스테레오 카메리 기반 3D 영상 정성 기술 개발 - 스테레오 카메리 기반 3D 영상 정성 기술 개발 - 스테레오 카메리 기반 3D 명상 정성 기술 개발 - 로봇 영화 후 원리 오너티형 및 페이 기술 개발 - 커메리 기반 선서 시스템 구축 및 기준 발교리를 성능 경기 - 로봇 영화 본 원리 오너티형 및 제어 기술 개발 - 카메리 기반 선서 시스템 구축 및 기준 발교리를 성능 경기 - 로봇 에 지본 3D /의 개발 □ 메티버스(유민-컴퓨터 인터렉션) 분야 (본여 3) 은함원실 환경에서의 성자원 핸드 인터렉션 기술 개발 - HMD 기반 운행성실 환경에서의 성자원 핸드 인터렉션 기술 개발 - HMD 기반 운행성실 환경 기축 및 핸드 모션템제 정치 연중 (Unity, Unical 함) - 실경간과 가성용간 간 공간 정한 기술 - 가성정보 기반 로봇의 움직레이를 위한 심자원 인터렉션 기술 - 가성정보 기반 로봇의 움직레이를 위한 심자원 인터렉션 기술	- 영성치리, Unity, 원경에서의 연구개발, 로봇제이 본 야의 연구개발 공경회자 우대 - C++, C# 면에 사용가능한 공경회자 우대 로보틱스, 전기전자, 전산, 제이계속, 메카트로닉스, 기	ybj@kistre.kr	

	지능로봇연구단	로봇 매니플레이터 기구 설계 및 제어 포닥, 인턴	5-16	3	1. 물책의 파지 상태 기반 실시간 적용성을 가지는 로봇 그리며 연구 - 현소한 공간에서 대상물에 적용하여 물제 파지를 돕는 로봇 손 목 연구 - 물체의 파지 상태의 실시간 추정을 위한 센서 구성 및 알고리증 연구 - 로봇 그리며 모듈화를 위한 엠베디드시스템 및 함께이 개발 2. 초미세 수술을 위한 형 센서 기반 말단부 및 확습 기반 모션 제 여 연구 - 순상을 최소화하여 미세한 조작을 위한 형 센서 기반 조소형 수 승을 입단부 연구 - 초미세 수슬로봇의 환역 조작을 위한 테이터 기반 모션 최적화 기술 개발	. 박사, 석사, 학사학위 소지자 및 23년 2월 졸업 에 정자 - 기계, 전자전기, 로봇, 메카드로닉스, 컴퓨터공학 또는 관련 관용, - 조임 분야 연구의 관성 있는 지원자-로봇 앤드 파 지제에 관한 연구 공항점자 우대 - (C/C++프로그레임, 리눅스, BOS 유경험자 우대 - NSI의 학연과의 전학 회장자 우대 기계, 로봇, 전기전자, 메카드로닉스, 컴퓨터공학 또는 관련 전공	yongseok.ihn@kistre.kr	
	지능로봇연구단	원격제어로봇 포닥 및 인턴	5-17	2	ROS 기반 원격 로봇 시스템 SW 개발 - 국리지료시설 내 로봇 활송 시나리오 구현 및 총합 시스템 개선 다수의 원격 로봇 시스템 연동 기술 개발 - 이동 로봇 작업 계획 개발 및 구한 격리시설 적용을 위한 사용자 평가 및 개발 시스템 개선 - 국내 격리병동 시설 내 평용을 위한 의료전 실사용 테스트 및 시스템 개선 (국내 격리 병동 활용 목표)	출업에정자 또는 타기관 근무경력 6개월 미만인 연구자 구자 Python, C++ 등 S/W 프로그램 가능 로봇 시스템 개 발 또는 KOS 유경행자 우대 기계, 전기전자, 전선, 컴퓨터, 메카트로닉스, 로보틱 스 또는 관한 전공	https://sites.google.com/vie w/hbum, yslim@kist.re.kr	
	지능로봇연구단	인간-교통 상호작용 포다 및 인턴	5-18	2	1. 인간-인간 대화 행동에서 나타나는 경청 행동 모델당 (예: 기계 약습 기반 발화자 용성 정보와 경청 행동과의 관계 모델 약습) 2. 로봇 정칭 행동 관소시 지지인 및 로봇 행동 구현 (80.5 개 3. 로봇 정칭 행동 유료성 검증을 위한 인간-로봇 성호작용 실험 설계 및 결과 분석	출엄예정자 또는 타기관 근무경력 6개월 미만의 연구자 Python, C++ 등 S/W 프로그램 가능 로봇시스템 개발 또는 ROS 유경함자 우대 기계, 전기전자, 전선, 컴퓨터, 메카트로닉스, 로보틱 스 또는 관한 전공	https://sites.google.com/vie w/hbum, yslim@kist.re.kr	
Al•로봇연구소	지능로봇연구단	이동로봇 실외 자율주행 및 SLAM 포닥 및 인턴	5-19	2	- 이동로봇의 설의 자율주행 및 원격제어 - 유인/격제/환경 인식 기번 Semantic SLAM	- ROS (Robot Operating System) 활용 가능지 우대 - 기계약습 또는 임배디드 컴퓨팅 (이루이노, 관즈배 리비이 항, 활용 가능자 우대 - 씨사위의 또는 석사약위 소지자 (취득 예정자 포 함) 로보틱스, 기계/전기/전산 등	cjs@kist.re.kr	AI-로봇연구소 홍은미 02-958-5302 024333@kist.re.kr
	지능로봇연구단	가변 강성 로봇 설계 Post-doc/인턴	5-20	2	O 가변경성 기구 설계 - 마그네틱 알경이 제명 메커니즘 설계 및 특성화 연구 - 전자석기만 경성 제에 연구 O 내물의 메커니즘 설계 - 문인가 기만 연수에 또못 내르의 설계 - 로봇 내장 모터 기반 자세 제에 연구	- (우대) 로봇 기구 설계 및 해석 유권현자 - (우대) 다자유도 로봇 모터 제어 유권현자 - (우대) 다자유도 로봇 모터 제어 유권현자 - (우대) 원인가 설계 유권현자 - 현교: Http://www.dhwanglub.com/ 기계, 전기전자, 제어계속, 매카트로닉스 로봇 및 기 타 관련 전공	donghyun@kist.re.kr	
	지능로봇연구단	로봇센드 설계 및 제어 Post-doc/인턴	5-21	2	- 다지형 로봇텐트 손가락/손바닥 매커니즘 기구 설계 및 제어 - 웹출구용(tendon-driven)형 로봇텐트 역주에이터 연구 - 로봇텐트 내용 축진 선시 및 약간 선서 연구 - 소사업기 반 비하는 울제 폐지 전략 연구 - 다음 정보 (multi-modal information) 기반 로봇텐트 제어 연구 - 용웹 용성 적용형 화지 전략 연구 - 손 연 (in-hand) 물체 조작 전략 연구 - 네고. 상세 연구분야 및 직무 내용/범위는 지원자와 협의 후 최 중 결정	- 학위: 학사/석사(인턴) 또는 박사(포스틱) (졸업에 정자 포함) - 권관: 기계, 전지전자, 메카트로닉스, 로봇, 컴퓨터 공학 - 로봇 기구설계 및 모터 제이 유경점자 우대 (필수 아남) - (Lab HP 참고) www.dhwanglab.com 기계, 전기전자, 제어계측, 메카트로닉스, 로봇 및 기 터 컨턴 전공	donghyun⊜kist.re.kr	
	지능로봇연구단	수술로봇 및 의광학 Post-doc/인턴	5-22	2	- 말조신경 구조 및 기능 가시화 연구 - 광건십년호촬행(OCD 시스템 설계 및 구동 SW 개발 - OCT 기반 말조선의 미국도 가시화 연구 - S문설권 기반 마나아 및 In-slu 조정 가시화 연구 - 동물설권 기반 마나아 및 In-slu 조정 가시화 연구 - 시기반 조적 영상치의 연구 - 네고 상세 연구반야 및 직무 내용/범위는 지원자와 협의 후 최 용 결정	- 학위: 학사/석사(인턴) 또는 박사(포스틱) (졸업에 정자 포함) - 전환: 의원학, 의학학, 생체권학, 기계, 전지전기 등 - OCT 시스템 바WSW 개발 또는 활용 연구 유경점 자 우대(교육 이번) - 소통물실험 유경점자 우대(필수 이번) - 스테라 바란 최고, www.diwanglab.com 공학, 의광학, 의공학, 의용성제공학, 기계, 전기전자, 제어계속, 성명공학	donghyun@kist.re.kr	
	헬스케어로봇연구단	수술내비게이션 Post-doc/인턴	5-23	2	3차원 컴퓨터 비전 기술을 이용한 수술 내비게이션 기술 개발	인탄· 석사학위자 및 졸업예정자 포타· 박사학위자 및 졸업예정자관련 연구 수행 경험 자 및 C++ 가능자 우대함 의공학, 기계, 전기전자, 컴퓨터공학 등 관련학과	dkylee@kist.re.kr	
					기후환경연구소		i I	
	물자원순환연구단	환경-전기화학, 에너지저장, 당수화 등 Post-Doc.	6-1	1	- 전기화학기반 수처리/에너지저장 공청 구성(당수화벡터리, 해수 천지, 축천식탈염법 등) - 전기화학기반 수처리 공청 운전 및 데이터 확보 - 안공자능 모델을 통한 공정성능 예측 (python 기반)	박사학위 이상 소지자(혹은 예정자) 환경공학, 화학공학, 도시환경공학, 컴퓨터공학, 지구환경공학 등	moonson@kist.re.kr	
	물자원순환연구단	한경수처리 / 한경소재 인턴	6-2	1	- 다가능성 반응형 필터의 최적 모듈을 개발하고, 이를 전지 및 반도체 선접 돼수 지리 요울 확보를 통해 현장 작용성을 극대화할 수 있는 기술 개발 - 경수처리장 언근 하면수를 대상으로 조류 발생인자 사건 제어소재 개발	환경 수처리용 소재 개발 및 수처리 관련 석사학위 이상 소지자 환경공학, 화학공학, 신소재공학 관련 학과	plead36@kistre.kr	
기후환경연구소	지속가능환경연구단	대기환경분야 Post-Doc.	6-3	1	1) 고본에는 집단본석기를 이용한 환경 중 유기성본 정말 규명 2) 스모그 형비를 이용한 미세인지 생성기작 및 유해성 규명 3) 미지 유체물질 본석가술 및 거동 예축 모델 개발	박사육의 이상 소재자(박시학의 취득일 기준 5년이 경과하지 아니면 자) 교육하는 경영화 연구 수학 경영자 우대 대기도행 및 프로그래밍 언어 (R, Python, Matlab 등) 경영자 우대 관련학 성영자 유대 관련학자 우대 관련학자 우대 관련학자 우대 관련학자 유대	jt0102@kist.re.kr	기후환경연구소장실 최승연 02-958-7302 024973@kist.re.kr
	지속가능환경연구단	지중한경 오염물질 모니터링 평가 Post-Dox.	6-4	1	1) 자구물리당사 기방(전기비자항유도보극)을 활용한 지증환경 오염물질에 대한 모나대한 및 해석 연구 가 증권속유로 오염물에(도, PCL BIFX IPH 등)의 지증환경 내 문합 양성 속의 도울 연구 3) 현상 요우 자리보 부자개념모델 수리 및 사전사우 관리방안 도울 연구 5) GSM 리크 및 지구물리암 모나다의 윤과외의 종합 해석 연구 5) GSM 리크 및 지구물리암사 모나대의 윤과외의 종합 해석 연 주 6) 오염물질의 자감에 따른 지구물리학적 물성 변화 예속 및 해석 연구 기과제 전반적인 관리 및 논문독해 작성 (SCI)	박사학위 소지자(박사학위 취득일 기준 5년이 경과 하지 아니한 자) 환경경학,지칠학,지구물리학	jchoi@kistre.kr	

바이오메디컬융합연구본부											
	바이오닉스연구센터	의공학/광섬유센서 인턴	7-1	1	- 의료기가 내려게이션은 공설을 센서 개발 - 공성을 기반 급성/가속도 측정 센서 개발 - 공성유를 활용한 고선 업저 센서 개발 - 급리성 기반의 공센서 정확도 명상 알고리를 개발 및 검증, 평가	- 착사, 석사 학위 이상 소지자 또는 취득 예정자 - 전기, 전자, 물리, 제료, 기계, 의공학 관련 전공자 우대 전기, 전자, 물리, 재료, 기계, 의공학 관련 전공	minsujang@kist.re.kr				
	바이오닉스연구센터	생체신호 기반의 등작 분석 포스틱/인턴	7-2	2	생채 신호 자리, 본석 및 응용 - CLO 30 또는 유사기능의 물을 이용한 기능성 의류 디자인 및 본석 - 30 로션점차 시스템, 다채널 IMU 및 EMG 센서 기반 보행 데이 터 구축 및 보행 사물레이터 개발 - Poep Learning 기반의 보통하에 편정 알고리즘 개발 - 최호설계 및 관련 SW 개발 - 임성신점을 통한 시스템 검증 및 상용화	- CLO 3D 또는 유사 소프트웨이 활용가능자 - 원류터 공학, 전기, 전자, 기계, 시스템, 의공력, 의류학 학사, 착사, 또는 학사 물업 또는 중업에장자 문 연구실 대학원 전략 회원자 우리 대조다 적연 로 그램 또는 서울소재 대학 연수생, UST 등) 전기전자, IT, 의공략, 스마트 의류 및 의상, 기계계 열	sangyoup@kist.re.kr				
	바이오닉스연구센터	의공학, 재활/운동기기, 생제신호 분 석 SW, BCI 포닥 또는 인턴	7-3	2	이 하지 제략 시스템 개별 및 평가 가술 개별 - 제략 기기를 통한 하지 운동기능 장에 평가 (도산)면자 또당성 등 - 하지 운동기능 장에 평가 (도산)면자 또당성 등 - 하지 운동기능 장에 평가 기기 관련 실험 수행 및 관련 SW 개별 - 생취식으로 제되 분석 - 5년 기반 연구 대략 전략 기계 관련 연구 대략 하다 (무대를 제어 관련 연구 대용 https://songjoolee.wissite.com/mysite/research 참고	역사, 석사, 또는 백사 확위 졸업, 또는 매정자 컴퓨터공학, 전기, 전자, 기계, 시스템, 의공학등의 공학계열, 또는 물리치료 등 의학 원공	songjoolee@kist.re.kr				
	생채분자인식연구센터	● 의과학/좌학/석학/성명과학 등 이공계 분야 포타/인턴	7-4	2	대사제 분석 기반 개인별 약을 반응성/부작용 정말 예측 기술 개 발 - UPUC-MS/MS 장비 기반의 코르트 임상시료 대사제 본석 - 영상시료 생물의 대사제 정성/정망 분석을 통한 분석별 최적화 및 대사제 대이대에이스 구축 - 시료 전체리, 기관성, 통계자리를 통한 대사제 네이오마케 발 급 - 타 기관과의 협업을 통해 배이오마커 기반 역을 부작용 예측 알 고리용 개발 등급 다연성 간 대사 질란 극복을 위한 혁신적 치료 원원기술 개 발 - 비표적 대사제작을 통한 약을 기전 연구 - 신규 약을 타고 별골	막사이성 졸업 및 졸업에찬자 원망본석기 기반 대사제 본석 연구 유경험자 우대 화학, 약학, 의과학, 성명과학 및 관 권 전공	hyunbeom@kistre.kr				
	생체재료연구센터	재료공정 및 분석 인턴/포닥	7-5	2	인채삽입형 소재 설계 및 제조 소재 가능화 및 표면처리 소재분석	학사/석사/박사 졸업 예정자 혹은 학위소지자 재료, 금속, 신소제, 기계	chany@kist.re.kr				
바이오메디컬 용합연구본부	생체재료연구센터	생체재료, 고분자 공학 포닥	7-6	1	고본자 하이드로젤을 이용한 조직 재생 연구 - 3D bioprinting이용 생제 직접 3D 지지제 설계 - 교본자 하이드로젤 함성 및 본석 - 조직 순성 모델에서의 효능 평가	의공학 관련 박사학위 소지자 및 취득예정자 의공학	scsong@kist.re.kr	바이오메디질용합연구 본부장실 감연주 02-958-5602 kimyj@kist.re.kr			
	생체재료연구센터	화학/화공/화학생명/재료공학 포스트닥	7-7	1	1) 물리전 배형 제어 연구 21 단백((fibronectin) 스템링 기술 연구 3) 성기기술 작용 중 건업물기세포 분화 연구 - 연수기간 : 2023. 4. 01 – 2023. 12. 31. (9개월/혐의하에 연 정 및 조기용료 가능)	2023년 3월1일 기준 박사학의 소지자로서 상기 연구 수행 가능 혹은 희망자 와막/화공/성명/외학성명/제표공학	omr2da@kist.re.kr				
	생체재료연구센터	생체재료, 고분자, 화학, 화학공학, 생명공 학 포닥	7-8	1	- 세묘 부착 및 달착이 가능한 기능성 생세분자 및 소재 개발 - 박대리오파지 활용을 통한 타켓 물질의 스크리닝 연구 - 세포 부착 물질 발굴 및 세포배양용 마이크로케리어 개발 - 세포 달착 물질 및 상체오염 자항성 물을 받골 - 마이크로케리어 기반의 세포 3차원 배양 연구	- 박사학위 소지자 - 파지(phage) 활용 기술 보유자 우대	ykjoung@kist.re.kr				
	생체재료연구센터	생체재료, 무기나노, 의공학, 소재 포닥/인턴	7-9	3	- 무기나노재료 (Inorganic Nanomaterials) 합성 및 분석 - 유영성 생체전국 (Soft bioelectronics) 제작 및 분석 - 생제전국의 독성 평가 - 생체 전기선호 육정 및 전기자국 치료 수행	- 화학공학, 화학, 신소제, 무기화학, 나노 전공 관련 박사학위 소지자 및 취득메경자 신소제, 화학, 화공, 의공학	sih@kist.re.kr				
	생체재료연구센터	생체재료 포닥	7-10	2	경제재료 - 경제 재료 개발 - 경제재료 개발 - 경제재료의 조직학적 평가 - 경제 반응성 재료 (Bloactive Materials) 평가 및 기능화 (in vitro & in vivo 실험)	박사학위 예정자 및 소지자 의공학, 컴퓨터공학, 생명공학, 재료 공학	hyuhan@kist.re.kr				
	의약소재연구센터	성명/면역학 포스덕/인턴	7-11	2	1. 항영 지료 - 유진자 가위 기반 유전자 발현 조절을 통한 항영 지료 가술 개발 - ev vivo 및 in vivo 내 유전자 가위 전달 시스템 구축 및 검증 - 표적 티갯 유진자 선별 및 유전자 발면 조절을 통한 항영 지료 검증 - In vitro 및 in vivo 실행 - 2. 면역 자료 - 지연살에서로, 수지상 세포, T 세포 등 다양한 면역 세포 엔지나 이용 기술 개발 - 특히 chimeric antigen ecceptor (CAR) 유전자 엔지나이징 - CAR-based therapy를 이용한 항영 면역 지료 구축	·생물학 관련 모든 본야 가능 생명과학/면역학/생물학	mihue⊕kist.re.kr				
	의약소재연구센터	생물학, 생화학, 약학, 생정과학, 수 의학 등 생명과학관한 전 학과 포닥, 인턴	7-12	2	1) 세포내 정원단배질 유전자의 발전 분석 (western blot, RT- gPCR, PAGE) 2) 청원단배질 유도로 인한 cytokine 발현 분석 (RT-gPCR, FACS, Confocal microscope) 3) 각종 in vitro assay	포닥연구원: 박사학위 취득예정자 혹은 소지자 인턴연구원: 석사학위 취득예정자 혹은 소지자 생물학, 생화적, 약학, 생명과학, 수의학 등 생명과학 관련 전학과	hjahn@kistre.kr				
	화학생명용합연구센터	생물학, 생명공학, 화학 관련 전분야 Post-Doc.	7-13	1	신약함에 활성됐가 시스템 구축, 약물의 작용기한 규명, 질병 관한 막단백절의 작용기전 규명	화학, 생물학, 생화학, 생명공학 전공 박사학위 소지 자 및 취득에정자 화학, 생물학, 생화학, 생명공학	scman84@kist.re.kr				

첨단소재기술연구본부											
	계산과학연구센터	제일원리계산, 소재인공지능 분야 포닥/인턴	8-1	2	1) 제일원리계산 기반 축매 설계 2) 머신리닝/A) 기반 소재 역설계 기술 개발 3) AI 로봇 기반 소재 개발 스마트연구실 구축 뭐 3가지 중 지원자의 관심분야 1개 선택하여 작무 수행 예정	- 학사/석사/박사 학위 소지자 및 취득예정자 - 연구에 열정이 있는 본 신소재공학, 화학공학, 기계공학, 물리학, 화학, 컴퓨 터공학, 전자공학, 전산학과 등	sangsoo@kist.re.kr				
	계산과학연구센터	비데이다/마신리닝 기반 신소재 설 계 포닥/선턴	8-2	2	어래 세부분야 중 지원자의 관심분야 1개 선택하여 작무수행 예정인. (정부 연구제안서 정조) - 이선리닝 및 지연이처리 기법을 이용한 소제 분야 (속에) 비미 이터 구축 및 환승 - 시 기반 우인성정실 (속에 개발용) 구축 및 이를 이용한 요음적 인 소개 함시 - 소계 분석데이터 (X-ray CT 등)과 마신리닝 융합을 통한 신규 분 석기능 개발	- 박사학의 소지자 및 취득에장자 (Post-Doc. 지원 지) - 학사이상 학위 소지자 및 취득에장자 (인한 지원자) - 회학/제교/화공/전기전자/컴퓨터공학 등 직무내용 관한 연료자 - 가맛hon 언이 사용가능자 우대 회학/제교/화공/전기전자/컴퓨터공학	donghun@kist.re.kr				
	계산과학연구센터	인공지능(AI), 인과주론, 머신리닝, 복잡계, 벡테이터 Post-Doc. 및 인턴	8-3	2	-연공지능(A) 및 연과주론의 수리적 알고리증 개발 -데이터 이날리텍스 및 벡테이터 해석 '농업, 원병, 금융 분야	학사/석사/박사학위 소지자 연공지능, (응용)수학, (이론)물리학, 정보이론, 계산 과학, 컴퓨터공학, 산업공학, 경제학, 경영학 등 유편 분야	eau@kist.re.kr				
	계산과학연구센터	강염병·코로나19 데이터 해석, 시뮬 레이션, 시각화 및 인공지능·통계물 리 해석 Post-Doc. 및 인턴	8-4	2	-강영병 및 코로나19 관련 빅데이터의 전처리 및 투처리, 시율례 이런, 시각화 -통계처리 등 인공자능 해석과 방역정책 정보 수집 -소비 데이터, 인구이동 데이터 저리 및 해석	학사/석사/박사학위 소지자 연공지능, (응용)수학, (이론)물리학, 정보이론, 계산 과학, 컴퓨터공학, 산업공학, 경제학, 경영학 등 유관 분야	eau@kist.re.kr				
	계산과학연구센터	제일원리계산 및 연공지능을 통한 이저전지 소재 개발 PostDoc 1인 / 인턴 1인	8-5	2	어래 적두 중 잘 맞는 적무를 수행할 예정 - 고래전에 및 기타 이자전기 소개 물성 분석. 제임업의리사 방법문을 이용하여 고래처면 및 기타 이자전기 소개의 열적 안정성, 화학체,선기화학체 안정성을 분석하고, 충방 선거용을 설명 - 제일원리 계산 데이터를 이용한 분자동역학 파면설 개발, 개설 문입과리산 결과 데이터를 이용한 분자동역학 파면설 개발, 개설 문입과리산 결과 데이터를 익승하여 그 정확도를 개연할 수 있는 본지국인 공개 인터를 입하여 그 의용하여 복잡한 구조에서의 소재물성 파악.	구 유성업사 - 인턴: 소재, 화학, 물리, 컴퓨터 관련 전공자	blee89@kist.re.kr				
	국한소재연구센터	일렉트로 수퍼 설률로오스 소재 개 발 인턴/Post-Doc	8-6	2	1. 일렉트로 수퍼 셜롱포오스 나노 구조 소재 개발 1-1. 플러즈마/이은병 기반 나노 표면 기술 개발 - 플러즈마/이은병 저리 기반 나노 가능성 셜롱포오스 소재 개발 나노 기능성 설롱포오스 소재 편이 제가 열 개발 1-2. 셜롱포오스 소재 마양 전 기속 개발 - 셜롱포오스 소재 마양 전도성 소재 확합하면구 - 플롱포오스 소재 마양 전도성 소재 확합하면구	해당 본야 관련 전공자, 학사/석사/박사학위 소지자 해당본야 전공자	080606@kist.re.kr				
첨단소재기숲연구본부	나노포토닉스연구센터	광 에너지 소재 및 소자 Post-Doc. / 인턴	8-7	2	광전 및 광열 에너지 소재/소자	박사 또는 석사 학위 소지자 (졸업예정자 포함) 나노제료/광학소자/진공기술/에너지제료	guminkang@kist.re.kr	청단소재기술 연구본부장실 신유경 02-958-5402 080656@kistre.kr			
8214/1821-67	나노포토닉스연구센터	에너지/환경 소재 포닥/인턴	8-8	2	. 자극감용행 복사병각소재 - 지속가능형 웨어리볼 에너지 하베스팅 소자 - 광충전이 용이한 수계 베터리 및 슈퍼케페시티	재료공학, 화학공학, 화학, 물리학, 나노공학, 기계공 학 등 관한 주선공 박사학위 또는 석사학위 소 지자 재료공학, 화학공학, 화학, 물리학, 나노공학, 기계공 학 등	lucid1@kist.re.kr				
	나노포토닉스연구센터	레이저 가공기술, 투명 반도체 소자, 목사열 제어 Post-doc.	8-9	2	- 레이저 마이크로 가공 기술을 이용한 투명 번도체 소재/소자 개발 발 - 복사냉각 특성 및 스마트 제어 기능이 결합된 투명 공전소자 개발	박사 학위 소지자 또는 예정자 신소제, 화학, 전기전자, 물리, 기계, 화공 등	kohd94@kist.re.kr				
	나노포토닉스연구센터	나노소재/에너지변환 포닥/인턴	8-10	2	나노소재 합성 및 특성평가	박사/석사 학위 소지자 재료, 화학, 물리 등	isk@kist.re.kr				
	나노포토닉스연구센터	유기소재합성/에너지소자 개발 Post-doc/인턴	8-11	2	받아 1. 신규 유기소재 기반 복사녕리 소자 개발 - 동적없던 홍수 유기/폴리머 소재 합성 - 복사녕리 소자 특성 연구 받아 2. 신규 유기소재 기반 투명 태양전지 개발 - 근적없던 홈수 유기/폴리머 소재 합성 - 유연 투명 공전자 소자 연구	Post-doc 박사학위 소자자 및 박사학위 취득 예정 자연한 학사/석사 학위 소자지 및 학위 취득 예정자 전한: 학사/석사 학위 소자지 및 학위 취득 예정자 건공: 제료, 선소제, 화학, 화라, 클리 등 관련 분야 전공자	jinhong.kim@kist.re.kr				
	물질구조제어연구센터	콩기능성 나노입지perovskite 영자 정/별광나노입자 합성 및 응용 Post-Doc/인턴	8-12	2	- 공기능성 나노입자 (정자정/제로보스카이트/나노형광체 등) 합성 및 응용(디스볼리이 등 광전소자) - 나노소제 광특성 제이 연구	- Post-Doc 박사학위 소지자 및 박사학위 취득 예정 자 - 인탄: 학사/석사 학위 소지자 및 학위 취득 예정자 - 전공: 제료, 신소제, 화학, 화공, 물리, 전자 등, 혹은 관련 분야 전공자	msekorea@kist.re.kr				
	물질구조제어연구센터	기능성 고본자활용 2차전지 연구 인턴, Post-doc	8-13	2	LB, NF8 등의 2자전지 제조, 측정 및 분석	- 본 연구실에서 합성한 고본자 소재를 활용하여 LIB, RFB 등의 2차전지를 제조. 숙청 및 본석 - 민틴(여사 및 석사 졸업여정자/저중약위 취득 후 경력 6개월 에밀, Root-doc(에사 및 박사 물업여정자/작위취득 5년 이내) 장막, 고본자, 재료관약	scho@kist.re.kr				
	센서시스템연구센터	미세유제공학(microfluidics), 현탁계 유체역학 인턴/Post-Doc	8-14	2	- Complex Microfluidics 기반의 나노비이오 센싱 및 개면동건기 응용 연구 - 원덕계 미내유체의 구조적/동적/유변학적 특성 관한 실험 혹은 계산 연구	- 인턴: 석사/학사(예정자 포함), 포스트닥: 박사(예정 자 포함) - 전공: 미세유체공학 및 현탁계유체역학 관련 미세유체공학 및 현탁계 유체역학 관련	mschun@kist.re.kr				
	소프트용합소재연구센터	하이브리드소재 기반 에너지/전자 소재 및 소자 Post-Doc	8-15	1	- 하이브리드소재 기반 에너지/전자 소재 및 소자 관련 연구 수행	- 박사학의 소지자 및 취득 예정자 - 형이브리드소재 기반 에너지/한자 소재 및 소자 연 구 권한 원장자 우대 화학, 신소재공학, 기계공학, 화학공학, 전기전자, 고 본자, 물리학, 나노경학 등	heesukkim@kist.re.kr				

	소프트용합소재연구센터	다중 분광분석 기반 소재분석 인턴	8-16	2	- 다중 본광본석 및 본광 08 구축 (근현대 미술공들의 디지털 데이터 확보 및 과학 기반 미술공 신 돼도 본석 지원 시스템 개발 과제 수행)	- 학석사학위 소지자 및 취득예정자 - 다중 분광분석 및 분광 DB 구축 관련 연구 경험자 우대 화공생명, 화목, 화공, 재료과, 기계/전자공학과 관련 전공자	s-slee@kist.re.kr	
	소프트용합소재연구센터	유연 천자 소자 및 소프트 로봇 기 술 Post-Doc/인턴	8-17	2	- 유민/난축 기반 및 전국 소재와 소자 기술 개발 - 유민·전자 및 웨이더블 전세 기술 개발 - 멀티모담 소프트 센서 및 공정 기술 개발	- 연구 관련 선내시 학위 소지지 및 취득 예정자 - 유연/난축 기관 및 전국 소재와 소자 기술, 웨어리 불 선치 관련 연구 정점자 우대 선소재공학, 기계공학, 화학공학, 전기전자, 고분자, 물리학, 나노공학 등	seungjun@kist.re.kr	
첨단소재기술연구본부	전자재료연구센터	압천소재, 압천 에너지 하베스팅 포스닥 1명	8-18	1	- Templated grain growth (TGG) 공청기술을 이용한 압전재료 개발 - 에너지 하베스팅 소재및 소자 개발 - 압천 작류 발전기 개발	- 박사 학위 소지자 또는 취득 예정자 - 관련인구 경험자 우대 재료, 화공, 기계, 전기전지, 울리, 화학	hcsong@kist.re.kr	청단소재기술 연구본부장실 신유경 02-958-5402
	전자재료연구센터	뉴로모픽 반도체 소재 및 소자 Post-doc/인턴	8-19	2	- 뉴로모픽 소제 및 소자 개발 - 권공 중착 장비 (ALD. Sputter 등)을 사용한 박약 및 구조제 중 착 - Fab (Litho, Etch, Lift-off 등) 공정을 충한 소자 제작 - 전기적 특성 본석을 동한 뉴로모픽 혹은 이어장 본야 활용	- 관련 본야 (신소재, 제료, 전기/전자, 컴퓨터 공학, 물리학 등) 박사 학의 보유자 - 반도체 관련 진로 탑색을 희망하는 분 - 진공 정비, 반도체 소자 제작 경험이 있는 분 우대 - 뉴모모의 컴퓨팅 관련이 아니어도 회로, 학습 시율 레이션 경험 있는 본 우대	jhyoon@kist.re.kr	080656@kist.re.kr
	전자재료연구센터	급속산회용-촉매입자 포다/인턴	8-20	2	본 공고에서 선발되는 포덕은 제료증명/회약증량/전자증약 기반 업 전문기식을 배당으로 나노물을 없었다나노액의 중취과 값은 제 르의 설계부터 회약 동안 전사용을 및 미대의 제학으로 있는 되의 연구들을 수명한 구대적으로 관순선하을 박부에 도둑된 도 로그를 이존들을 수명한 구대적으로 관순선하을 박부에 도둑된 도 로그를 이존들을 통해 나노일자 국예 회학로 실시간으로 당성시 가는 건구를 수행하며, 이러한 참성 연구들은 나노물상시노백 동에서의 입상점형 제기나를 많은 연구들은 나노물상시노백 내석에서의 입상점형 제기나를 많은 연구들은 기술을 불용한 전세 (제시 가스간선서 및 이란인 설심을 통하면 전쟁될 것임.	한 학생 전 전 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	wkdwltn92@kist.re.kr	
					청정신기술연구본부			
	수소-연료전지연구센터	광전기화학적 수소생산 관련 소재 및 소자 개발 Post-doc / 학사 인턴	9-1	2	광전기화학적 수천에 구동에 적합한 적합한 촉매 개발 및 공투과 단위전지 장치 설계와 최적화를 위한 연구/개발을 수행할 예정임.	Post-doc. : 관련 전공 박사 이상 학사 인턴 : 관련 전공 박사 이상 관련 전공	jinykim@kist.re.kr	
	수소-연료전지연구센터	전기화확적 수소 생산 및 저장 Post-Doc	9-2	1	- 다양한 수소 성산 및 저장 반응에 대한 전기회작분석을 통해 역 성 수소 문반체상 반응 및 그 메기니름을 분석 국정한 국예 및 반응 관리 도입을 증한 수소 생산 및 저장 요을 최대화하는 연구에 중점하므로 활동할 예정인 - 이름 통해 개필된 건기회작적 수소 생산 및 저장 기술을 하루 그린 수소의 생산·예상 저장 일제화를 위한 개발 방향을 설정하 는데 통상형 개필인	관련 전공 박사 확위 소지자 관련 전공	skcho@kist.re.kr	
	수소연료전지연구센터	1.전기점략적 영모니아 합성 축매. 수소분리막 및 프로운 전도성 전해 정 신소재 개발, 2.고운 설라의 기반 연료전지 및 고운 프로운 수전해 (PCFC, PCEC) Post-Doc/인턴	9-3	2	1. 직무료용(제육보야, 전기정확적 업모니아 합성 축제, 수소분리 약 및 프로운 전도성 전해질 산소재 개발) - Ru 기반 업모니아 합성 독체 산소재 개발 - Ru 전통 BucCool 최로보스케이트 기반 프로운 전도성 전해질 산소재 개발을 통한 전기화학적 업모니아 약 변유기 개발 2. 직무대용(재용보야: 고은 세라의 기반 연료전지 및 고은 프로운 수전쟁 (PCCC) 보스 보신 - 도된 PCZNO4 (Ruddelsden-Popper phase) 기반 프로운 수전해 (PCCC) 보스 보신 보신 (PCCC) 보스 보신 제 개발 - Pd 도된 880cCo3 패로보스케이트 기반 프로운 전도성 전해질 산소재 개발을 통한 PCEC 단천지 제작 및 특성 평가	관련 전공	shchoi@kist.re.kr	
	에너지소재연구센터	금속 소재의 수소 홈 방출 과정 중 소재 구조 변화 분석 Post-Doc.	9-4	1	- 미세구조 본석 기법을 활용한 수소 경속 간 성호적용 규명 연구 - 합급 주조. 열제리 본색 등의 공정을 통한 급속 시면 준비 (T. 계 수소 저정 합금 및 Fc제 구조용 급속 시면 등) - 금속 내 수소 홈 명을 거동의 in situ/ex situ 본석을 위한 미소 시면 준비 (RIS 활동) 동	· 학위: 박사 (학위수여에정자 포함) · 전문· 제료공학, 신소제공학, 금속공학 및 관련 전공 학위 소지자 · SEM, XRD를 활용한 금속 재료 연구 유경험자 제료공학, 신소제공학, 금속공학 및 관련 전공	jinwookim@kist.re.kr	
청정신기술연구본부	에너지소재연구센터	고온수전해 Post-Doc.	9-5	1	고온수전에 소재/공정기술 개발	재료공학 또는 화학공학 전공 박사학위자 재료공학 또는 화학공학	kjyoon@kist.re.kr	청정신기술연구 본부장실 장수림 02-958-5202
	차세대태양전지연구센터	광전 소자용 소재 개발 Post-Doc/인턴	9-6	2	(1) 공전 소자용 소재 개발 - 공전 소자용 유기 및 무기 소재 개발 및 분석 (2) 공전 소자 본석 및 공정 개발 - 공전 소자 제작 및 보석 (전기적 분석, 공약적 분석, 박막 분석) - 공전 소자 제작 있 보석 (전기적 분석, 공약적 분석, 박막 분석)	화관/화학/재료/전치/울리 등 관현 분야 학사 졸업 이상 화관/철학/재료/전치/울리 등 관현 분야	hjson@kistre.kr	025255@kist.re.kr
	차세대태양전지연구센터	페로브스카이트 기반 텐덤테양전지 Post-Doc/인턴	9-7	2	- 진공중착 폐로브스카이트 태양전지 개발 - 실리콘/페로브스카이트 텐덤 태양전지 개발 - CIGS/페로브스카이트 텐덤 태양전지 개발	- 관련 전공 학사학위 이상 선소제, 재료, 항공, 물리, 화막 등 관 현분야 전공자	dklee@kist.re.kr	
	차세대태양전지연구센터	자세대 태양전지 안정성 항상 기술 개발 인턴	9-8	1	1. ALD 공정 기반 NiOx 청공수승증 개발 2. 유기 정가제 도입을 통한 태양한지 계만 재결합 특성 개선	- 해당분야 관련 전공 학사학위 소지자(중에자 포함) 재료공학, 신소재공학, 화학공학, 전기전자공학, 화 학, 또는 물리학	yhjang@kist.re.kr	
	차세대태양전지연구센터	자세대 박막태양전지 모듈 공정 및 분석 기술 Post-Doc/인턴	9-9	2	- 화함을 무기박약 태양전지 설 및 모듈 공정 기술 - 레이저 기반 박약패타당 공정 - 박약태양전지 소자 특성 분석 연구	- 재료공학, 전기-전자공학, 기계, 물리 분야의 전공 지식이 우수한 자 - 레이저 가공 공정 전문가 - 레이저 활용 광학장지 전문가 제료, 물리학, 전기전자, 기계 등 공학 및 이탁전공	jhjeong@kist.re.kr	
	창정에너지연구센터	고분자 제료 합성과 이의 전기화학 적 용용 Post-Doc	9-10	1	. 이온교환역/이온교환역인터 제조를 위한 신규 교환자 제로 설계 및 합성 전기화학적 CO2 한참을 위한 이온교환역의 제조 및 특성본석 - 전기화학적 구동조건에서 이온교환역의 내구성 및 성능 보강	- 고본자 이온교환막 제조 및 특성분석 가능자 우대 - 고본자 합성 가능자 우대 화탁, 화학공학, 고본자공학 관련 분야	jhkoh@kist.re.kr	
	에너지소재연구센터	에너지소재 Post-Doc.	9-11	1	EBSD-TKD 분석 및 면저항 측정을 이용한 연료전지용 분리판 소 재 산화 거동 및 물성 변화 해석	-학위 : 박사 -전공 : 신소재공학, 재료공학 등 관련분야 전공자 신소재공학, 재료공학 등 관련분야 전공자	dongikkim@kist.re.kr	

								
	청정신기술연구본부장실	불소수지의 원재료의 수적 계열화를 위한 축매, 변경기 및 공정기술개발 인턴(2명), 포닥(1명)	9-12	3	변용공학, 유기회학, 고본자 합성, 분리/정체 공정 및 공정 기본설계 기술 게 기술 - 수소한기자용 단령체 및 불소수지 합성 기술 개발 (기 불소계 단령체 제조 및 불소계 소재 응용 기술에 관한 공정 개발 (2) 단소중립 및 에너지환경 관한 축매, 반용기 및 공정 개발	화학공학, 공업화학, 화학, 유기화학, 고본자공학, 기 제공학 및 화학 전공(인탄: 학사 이상) 유경함자 화학공학, 공업화학, 화학, 유기화학, 고본자공학, 기계공학 및 화학 전공	djmoon@kist.re.kr	
	청정신기술연구본부장실	AI 기반의 회전체 모티터링 및 진단. 디지털 류원 포닥	9-13	2	터보기기의 머신 기반의 Tribology 및 Rotordynamics 연구 컴퓨터 시 관련 및 C# 기반의 언어 활용이 가능한 비전공학 연구 자	1) 고속 회전기기 전통 및 제어 관련 연구자 2) 트라이블로지 관련 학위 및 연구자 3) 컴푸터 공학의 비전관련 연구자	lyb@kist.re.kr	
	청정에너지연구센터	미생물을 이용한 유기산, 알코울, 바이오폴 리머 생산 Post-doc. 및 인턴	9-14	2	- 대사공학, 합성생물학 기반 제조합 미성을 개발 및 최적화 - 모막스 보석을 통한 미생을 대시되고 조월 보석 및 제설계 - 이삭화한소와 바이오메스 동시소오형 미생을 및 발효 기술 개 발 - 타것 소재 생산 최적화를 위한 배양조건 함석 및 최적화	한편본야 전공자 (성명공학, 성물화공, 환경공학, 대 사공학 등) Post-doc: 박사학위 소지자 또는 예정자 인단: 석사학위 소지자 생명공학, 성물화공, 환경공학, 대사공학 등	won@kist.re.kr	
청정신기술연구본부	창정에너지연구센터	전기화학적 촉매 소재 개발 및 반용 시스템 고도화 Post-Doc	9-15	1	1. 이산화반소 환영을 위한 전기회학 속에 디자인 및 제조 2. 제작한 속매의 특성 및 물성 분석 3. 이산화반소 한 반응 운전 및 생성을 분석 4. 이산화반소 한 반응 관진 및 생성을 분석 4. 이산화반소 한한 반응 시스템 및 반응기 개발 5. 실험 결과 정리 및 논문 작성	-전기화학 천문성 -독매 소재 분석 천문성 -전기화학적 합성 생성을 분석 전문성 이학, 공학 전분야	dahye0803@kist.re.kr	청정신기술연구 본부장실 장수림 02-958-5202 025255@kist.re.kr
	청정에너지연구센터	전기화학적 화합을 생산기술 개발 Post-Doc	9-16	2	. 찬기회학적 유기회합을 생산 전극속에 소재 및 반용기 - 천기회학적 증성/알달라인 물산화 반응 전극속에 소재 및 반응 기 - 천기회학적 속에 개면헌상 실시간 분석 (in-situ X-선, ATR-IR 분 석)	- 화학, 최공. 신소적 또는 관련전공 박사학의 소지자 (또는 물업예정자) - 경기회약 관련분야 연구경험자 또는 전공자 - 노선 가족기, IN/Raman 실시간 분석 연구경험자 또는 권공자 화학, 화공. 신소재 또는 관련 전공	dnklee@kist.re.kr	
	창청에너지연구센터	전기화학적 이신화탄소 전환 유용물질 생산 연구 인턴	9-17	1	전기회학적 CO2 전략 CO 대양성산을 위한 반응기 개발 ◆ 고압 반응을 위한 반응기 설계 및 운전 최적회 연구를 통한 1.5 km. 2 전략받도 당성 - 유모설계 및 구조 적적을 통한 전략을 50% 이상의 이산화단 소 편한 반응기 개발 - 합역에 (조심계 따른 전기회학적 이산화단소 전략 경향 연구 - 조원의 조건 전기회학적 (O2 전략 CO)에 발한 성산 제공급 반응기 성능 항상을 위한 반응기 구성교고 기술 개발 및 운전 조건 확립 - 본데의, 전해질, 유속, 운전 환경 변수 영향 파악	석사학위 이학, 공학 전분야	abcabac@kist.re.kr	
				연				
	도핑콘트롤센터	약물 부작용 예측을 위한 대사체 분석 연구 인턴 or Post-Doc.	10-1	3	- 대사제 분석 기반 개인별 약물 반응성/부작용 정밀 예측 기술 개발 - 생체매질 표준물질 기반 정량분석 정확도 향상 플랫폼 구축 연 구	- 학사 이상 (예정자 포함) 의과학/화학/약학/생명과학 등 이공계 전분야	-	
	도핑콘트롤센터	GC-MS, LC-MS, immunoassay 기반 도핑시료분석 및 시료관리 / 형광현 미경 및 혈구분석기 활용 혈구분석 인턴	10-2	5	- GC-MS, LC-MS, immunoassay 기반 도핑시로분석 및 시료관리 - 형광천미경 및 혈구분석기 활용 혈구분석	- 학사 이상 (예정자 포함) 생명공학, 화학, 약학 등 이공계 전분야		
	연구자원·테이터지원본부 장실	에너지환경소재 측정분석 프로토콜 수집 및 공유 플랫폼 개발 인턴	10-3	1	- 측정본석 프로토를 연구과제 관리 - 분석, 혹칭 프로토를 통뜻器 운영, 자문단 관리 - 본석, 축칭의에서 일어지는 다양한 종류의 프로토콜을 제계적 으로 수립/관리 시스템 개발	- 착사 이상(예정자 포함) 이공계 전분야		
	특성분석-데이터센터	NMR 기반 생체분자 구조분석 인턴	10-4	1	- NMR 기반 단백질, 핵산, 웹타이드 및 Biomaterial 구조분석 - NMR 기반 생제분자 상호작용 분석	- 학사 이상 (메정자 포함) 화학, 생화학, 구조분자생물학	md@kistre.kr	연구자원 데이터지원본부장실 유로 02-958-951 rrd@kist.re.kr
연구자원데이터 지원본부	특성분석-데이터센터	원내 나노재료 분석지원 및 분석기 술 개발에 관한 연구 인턴	10-5	1	- 원내 내노재료 본석자원 및 본석가술 개발 연구 - 연구강비공동활용시설 인저정기관의 운영 - 본석숙정 경비 표준화 및 본석점승관리시스템 운영 - 본석숙정 강비에서 얻어자는 다양한 종류의 프로토물을 체계적 으로 수집,관리	- 착사 이상 (예정자 포함) 이공계 전분야		
	특성분석·데이터센터	전자현미경 AI 활용 기술 개발 분야 인턴	10-6	2	- 에너지환경소재 측정분석 데이터의 AI 기반의 자동화, 신분석기 술 개발 - 논문화에 이르는 심도 있는 말착분석 및 복합분석 필요한 공동 연구 수행	- 학사 이상(예정자 포함) 통계학, 산업공학, 재료공학, 신소재공학, 화학공학		
	특성분석-데이터센터	자연어처리 기반 논문데이터 추출 기술 개발 Post-Doc.	10-7	1	- 자연어처리 기술을 활용한 논문데이터 추출 기술 개발	- 박사 학위자(예정자 포함) 신소재공학, 재료공학, 컴퓨터공학		
	특성분석·데이터센터	딥러닝 기반 전자현미경 이미지/스 팩트럼 해석기술 개발 Post-Doc.	10-8	1	- 이미지 본석데이터 딥러닝 해석기술 개발 - 스펙트럼 분석데이터 딥러닝 해석기술 개발	- 박사 학위자(예정자 포함) 신소재공학, 재료공학, 컴퓨터공학		
	특성분석-데이터센터	XRD, SAXS, XRF 분석기술을 이용한 나노소제 분석연구 및 분석 지원 인턴	10-9	1	- 현내의 일착 연구 지원 1) 원내의 등에오는 다양한 재료 분석 중 논문화에 이르는 심도 있는 말의 분석 지원 있는 말의 분석 지원 2) 다양한 Xxg 측정 정치를 이용한 복합 분석에 대해 공동연구 수행 및 본석기술 개발 3) 결과의 데이터 지리, 본석()에서, 시뮬레이션 등 수행	- 학사 이상 (예정자 포함) 물리, 화학, 신소재공학 등		
					안전증강융합연구단	국내/해외 대학 석사 학위 이상 소지자, 모집 분야와		안전증강용합연구단
안전증강용합연구단	안전증강융합연구단	검체 채취 로봇 포닥/ 인턴	11-1	2	검제 채취 로봇 시스템 개발 (설계, 제어, 시스템 통합, 비전, 딥러 닝 관련 업무중 택하여 업무수행) 자파솔 루션용합연구단		jazzpian@kist.re.kr	손정민 02-958-7162 rabbitorial@kist.re.kr
				<u>ٿ</u>				
	전자파솔루션용합연구단	차세대 고분자 및 복합소재 합성/제 조/분석/평가 Post-Doc. 또는 인턴	12-1	2	(1) 고내열성 및 전자파 대응 고성능 고분자 및 복합소재 (2) 소마트/동경강용형 고본자 및 복합소재 (3) 화학/교본사 명성 및 복합소재 제조/분석 (4) 소재의 구조-명성 상관관계 규정 (5) 이종소재 계면제어 및 접착	박사 또는 석사 화공, 화학, 재료, 신소제, 고분자, 섬유, 기계 등	jaewoo96@kist.re.kr	첨단소재기술연구
전자파솔루션 용합연구단	전자파솔루션융합연구단	가능성 유기 본자/교본자 합성 및 확인화 Post-Doc. 또는 인턴	12-2	2	○ 연구 목표: MXene을 이용한 고성능 분산에의 제조와 코팅 공 정 개별 및 전기적 독성 분석 ○ 연구 내용 - MXene의 용매 본산성 항상을 위한 표면자리 기술 - Mxene의 요매적인 표면 교명을 위한 고본자 바인더 및 참기제 설계 및 함성 - 교육질 양크 제조 및 인쇄/스프레이 공정 적용 - 제조된 부품 소제의 전기적 특성 평기와 본석	박사, 석사, 탁사학위 소지자 재료공학, 고본자공학, 화학공학, 화학	takim717@kist.re.kr	본부장실 신유경 02-958-5402 080656@kist.re.kr